Investigation of Potting-Adhesive-Induced Thermal Stress in MEMS Pressure Sensor
Abstract
:1. Introduction
2. Experimental Investigation
3. Analytic Analysis
4. Numerical Simulation
4.1. Geometric Model
4.2. Finite Element Model
4.3. Finite Element Simulation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Prosenjit, R. MEMS and MOEMS Technology and Applications; SPIE: Bellingham, WA, USA, 2000; ISBN 9780819495983. [Google Scholar]
- Cibula, E.; Ðonlagić, D. Miniature fiber-optic pressure sensor with a polymer diaphragm. Appl. Optics. 2005, 44, 2736–2744. [Google Scholar] [CrossRef] [PubMed]
- Ge, G.; Zhang, Y.; Shao, J.; Wang, W.; Si, W.; Huang, W.; Dong, X. Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv. Funct. Mater. 2018, 28, 1802576. [Google Scholar] [CrossRef]
- Lee, T.H.; Kim, E.S.; Kim, T.H.; Jeong, M.Y. Simple pressure sensor for a vehicle seat using a woven polymer optical-fiber sheet. J. Korean Phys. Soc. 2015, 67, 1947–1951. [Google Scholar] [CrossRef]
- Zhang, M.; Du, L.; Zhao, Z.; Fang, Z. Low-stress packaging for a MEMS atmosphere pressure sensor. In Proceedings of the IEEE International Conference on Nano/Micro Engineered & Molecular Systems, Suzhou, China, 7–10 April 2013. [Google Scholar]
- Li, C.; Cordovilla, F.; Ocaa, J. Design optimization and fabrication of a novel structural piezoresistive pressure sensor for micro-pressure measurement. Solid State Electron. 2018, 139, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Tang, Z.; Lin, H.; Zhan, K.; Wan, J.; Wu, S.; Gu, Y.; Luo, W.; Zhang, W. A low temperature drifting acoustic wave pressure sensor with an integrated vacuum cavity for absolute pressure sensing. Sensors 2020, 20, 1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, A.; Zhang, X.; Zhu, B. Mechanical structural design of a piezoresistive pressure sensor for low-pressure measurement: A computational analysis by increases in the sensor sensitivity. Sensors 2018, 18, 2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krondorfer, R.; Kim, Y.K.; Kim, J.; Gustafson, C.G.; Lommasson, T.C. Finite element simulation of package stress in transfer molded MEMS pressure sensors. Microelectron. Reliab. 2004, 44, 1995–2002. [Google Scholar] [CrossRef]
- Marina, S.; Dubravka, R.; Sreco, M. Residual stresses in a pressure-sensor package induced by adhesive material during curing: A case study-ScienceDirect. Sens. Actuators A Phys. 2004, 116, 442–449. [Google Scholar]
- Wu, B.; Kim, D.S.; Han, B.; Palczynska, A.; Gromala, P.J. Thermal deformation analysis of automotive electronic control units subjected to passive and active thermal conditions. In Proceedings of the 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, Budapest, Hungary, 19–22 April 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6. [Google Scholar]
- Zhang, Y.; Li, H.; Shen, S.; Zhang, G.; Yang, Y.; Liu, Z.; Xie, Q.; Gao, C.; Zhang, P.; Zhao, W. Investigation of acoustic injection on the MPU6050 accelerometer. Sensors 2019, 19, 3083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, A.; Zhang, X.; Zhu, B. Effects of temperature and residual stresses on the output characteristics of a piezoresistive pressure sensor. IEEE Access. 2019, 7, 27668–27676. [Google Scholar] [CrossRef]
- Chiou, J.; Chen, S. Thermal hysteresis analysis of MEMS pressure sensors. ASME Int. Mech. Eng. Congr. Expo. 2004, 47071, 281–288. [Google Scholar]
- Lu, C.; Yeh, M. Thermal stress analysis of chip with pressure sensor embedded in accelerometer. In Proceedings of the 2017 International Conference on Electronics Packaging (ICEP), Yamagata, Japan, 19–22 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 540–543. [Google Scholar]
- Song, X.; Liu, S. A performance prediction model for a piezoresistive transducer pressure sensor. In Proceedings of the Fifth International Conference on Electronic Packaging Technology Proceedings, Shanghai, China, 28–30 October 2003; IEEE: Piscataway, NJ, USA, 2003; pp. 30–35. [Google Scholar]
- Subbiah, N.; Feng, Q.; Wilde, J.; Bruckner, G. High-temperature pressure sensor package and characterization of thermal stress in the assembly up to 500 °C. In Proceedings of the Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 28–31 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 878–883. [Google Scholar]
- Zhang, Z.; Wan, Z.; Liu, C.; Cao, G.; Lu, Y.; Liu, S. Effects of adhesive material on the output characteristics of pressure sensor. In Proceedings of the International Conference on Electronic Packaging Technology & High Density Packaging, Xi’an, China, 16–19 August 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 657–660. [Google Scholar]
- Chou, T.L.; Chu, C.H.; Lin, C.T.; Chiang, K.N. Sensitivity analysis of packaging effect of silicon-based piezoresistive pressure sensor. Sens. Actuators A Phys. 2009, 152, 29–38. [Google Scholar] [CrossRef]
- Dörfler, A.; Feiertag, G.; Schmidt, M.; Ruediger, A.; Wagner, U. Numerical optimization of thermally induced hysteresis effects in the packaging of MEMS pressure sensors. IEEE Sens. J. 2019, 19, 3633–3639. [Google Scholar] [CrossRef]
- Strain Calculation in MEMS; Wuhan FineMEMS Inc.: Wuhan, China, 2018.
- Uses. Available online: https://www.britannica.com/science/silicon/Uses (accessed on 11 March 2021).
- Physical Properties of Potting Materials for Pressure Sensor; Wuhan FineMEMS Inc.: Wuhan, China, 2017.
- Physical Properties of Bonding Adhesive for Pressure Sensor; Wuhan FineMEMS Inc.: Wuhan, China, 2016.
- Alumina—Aluminium Oxide—Al2O3—A Refractory Ceramic Oxide. Available online: https://www.azom.com/properties.aspx?ArticleID=52 (accessed on 11 March 2021).
Structure | Materials | Property (Unit) | Value | Reference |
---|---|---|---|---|
MEMS | Silicon | CTE (1/K) | 2.6 × 10−6 | [22] |
E (GPa) | 170 | [22] | ||
μ | 0.28 | [22] | ||
ρ (kg/m3) | 2329 | [22] | ||
Potting adhesive | Epoxy resin 1 | CTE (1/K) | (14.9~23.0) × 10−6 | [23] |
E (GPa) | 1.30~1.75 | [23] | ||
μ | 0.3 | [23] | ||
ρ (kg/m3) | 2000 | [23] | ||
Bonding adhesive | Epoxy resin 2 | CTE (1/K) | (26~40) × 10−6 | [24] |
E (GPa) | 2.2~3.5 | [24] | ||
μ | 0.3 | [24] | ||
ρ (kg/m3) | 1700 | [24] | ||
Shield ring | Al2O3 | CTE (1/K) E (GPa) μ ρ (kg/m3) | 6.5 × 10−6 400 0.22 3965 | [25] [25] [25] [25] |
Substrate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, B.; Li, H.; Shen, S.; Li, F.; Ni, W.; Cao, W. Investigation of Potting-Adhesive-Induced Thermal Stress in MEMS Pressure Sensor. Sensors 2021, 21, 2011. https://doi.org/10.3390/s21062011
Zhang Y, Li B, Li H, Shen S, Li F, Ni W, Cao W. Investigation of Potting-Adhesive-Induced Thermal Stress in MEMS Pressure Sensor. Sensors. 2021; 21(6):2011. https://doi.org/10.3390/s21062011
Chicago/Turabian StyleZhang, Yunfan, Bowen Li, Hui Li, Shengnan Shen, Feng Li, Wentao Ni, and Wan Cao. 2021. "Investigation of Potting-Adhesive-Induced Thermal Stress in MEMS Pressure Sensor" Sensors 21, no. 6: 2011. https://doi.org/10.3390/s21062011
APA StyleZhang, Y., Li, B., Li, H., Shen, S., Li, F., Ni, W., & Cao, W. (2021). Investigation of Potting-Adhesive-Induced Thermal Stress in MEMS Pressure Sensor. Sensors, 21(6), 2011. https://doi.org/10.3390/s21062011