FLEX-IoT: Secure and Resource-Efficient Network Boot System for Flexible-IoT Platform
Abstract
:1. Introduction
2. Related Work
2.1. Attack-Resistant TFTP
2.2. Resource-Efficient Network Boot
3. System Design of FLEX-IoT Platform
3.1. The FLEX-IoT Platform Overview
3.2. TFTP with Enhanced Security
3.2.1. TFTP-Compatible File Access Control
3.2.2. TFTP-Compatible Attacker Deception
3.3. Resource-Efficient Network Boot
3.3.1. Adaptive Transfer
3.3.2. Incorporation into the Existing Platforms
4. Experimental Results
4.1. Experiment Environment
4.2. Experiment on the Proposed Attacker Deception Technique
4.2.1. Overhead of the Attacker Deception Technique
4.2.2. Time Required to Perform Brute-Force Attack against Attacker Deception Technique
4.3. Resource-Efficient Network Boot Experiment
4.3.1. Total Volume of Transferred System Image with/without Adaptive Transfer Technique
4.3.2. The Transfer Completion time of Block Scheduling with Data Deduplication
5. Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hung, M. Leading the IoT. Technical Report, Gartner. 2017. Available online: https://www.gartner.com/en/documents/3664326/iot-s-challenges-and-opportunities-in-2017-a-gartner-tre (accessed on 10 March 2021).
- Statista Research Department. Internet of Things(IoT) Connected Devices Installed as Worldwide from 2015 to 2025. Available online: https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/ (accessed on 10 March 2021).
- Mahmoud, R.; Yousuf, T.; Aloul, F.; Zualkernan, I. Internet of things (IoT) security: Current status, challenges and prospective measures. In Proceedings of the 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST), London, UK, 14–16 December 2015; pp. 336–341. [Google Scholar]
- Patti, E.; Acquaviva, A. IoT platform for Smart Cities: Requirements and implementation case studies. In Proceedings of the 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI), Bologna, Italy, 7–9 September 2016; pp. 1–6. [Google Scholar]
- Fortino, G.; Savaglio, C.; Palau, C.E.; de Puga, J.S.; Ganzha, M.; Paprzycki, M.; Montesinos, M.; Liotta, A.; Llop, M. Towards multilayer interoperability of heterogeneous IoT platforms: The INTER-IoT approach. In Integration, Interconnection, and Interoperability of IoT Systems; Springer: Berlin, Germany, 2018; pp. 199–232. [Google Scholar]
- Verma, R.K.; Pattanaik, K.; Bharti, S.; Saxena, D. In-network context inference in IoT sensory environment for efficient network resource utilization. J. Netw. Comput. Appl. 2019, 130, 89–103. [Google Scholar] [CrossRef]
- Ogawa, K.; Sekine, H.; Kanai, K.; Nakamura, K.; Kanemitsu, H.; Katto, J.; Nakazato, H. Performance evaluations of iot device virtualization for efficient resource utilization. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–6. [Google Scholar]
- Hassija, V.; Chamola, V.; Saxena, V.; Jain, D.; Goyal, P.; Sikdar, B. A survey on IoT security: Application areas, security threats, and solution architectures. IEEE Access 2019, 7, 82721–82743. [Google Scholar] [CrossRef]
- Zhang, Z.K.; Cho, M.C.Y.; Wang, C.W.; Hsu, C.W.; Chen, C.K.; Shieh, S. IoT security: Ongoing challenges and research opportunities. In Proceedings of the 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications, Matsue, Japan, 17–19 November 2014; pp. 230–234. [Google Scholar]
- O’Neill, M. Insecurity by design: Today’s IoT device security problem. Engineering 2016, 2, 48–49. [Google Scholar] [CrossRef] [Green Version]
- Sollins, K. The TFTP Protocol (Revision 2); Technical Report, STD 33, RFC 1350; MIT: Hong Kong, China, 1992. [Google Scholar]
- Lear, E. Uniform Resource Identifier (URI) Scheme and Applicability Statement for the Trivial File Transfer Protocol (TFTP). Technical Report, RFC 3617. 2003. Available online: https://tools.ietf.org/html/rfc3617 (accessed on 10 March 2021).
- Isa, M.A.M.; Mohamed, N.N.; Hashim, H.; Adnan, S.F.S.; Mahmod, R. A lightweight and secure TFTP protocol for smart environment. In Proceedings of the 2012 International Symposium on Computer Applications and Industrial Electronics (ISCAIE), Kota Kinabalu, Malaysia, 3–4 December 2012; pp. 302–306. [Google Scholar]
- Horvat, G.; Zagar, D.; Martinovic, G. STFTP: Secure TFTP protocol for embedded multi-agent systems communication. Adv. Electr. Comput. Eng. 2013, 13, 23–32. [Google Scholar] [CrossRef]
- Park, K.H.; Park, K.W. RE-NetBoot: Resource-Efficient Network Boot for IoT Platform. Res. Briefs Inf. Commun. Technol. Evol. (ReBICTE) 2019. [Google Scholar] [CrossRef]
- Isa, M.A.M.; Hashim, H.; Adnan, S.F.S.; Manan, J.l.A.; Mahmod, R. A secure TFTP protocol with security proofs. arXiv 2014, arXiv:1409.0060. [Google Scholar]
- Malkin, G.; Harkin, A. RFC2347: TFTP Option Extension. Available online: https://tools.ietf.org/html/rfc2347 (accessed on 10 March 2021).
- Mohamed, N.; Yussoff, Y.; Isa, M.; Hashim, H. Symmetric encryption using pre-shared public parameters for a secure TFTP protocol. J. Eng. Sci. Technol. 2017, 12, 98–112. [Google Scholar]
- Mohamed, N.N.; Yussoff, Y.M.; Isa, M.A.M.; Hashim, H. Extending hybrid approach to secure Trivial File Transfer Protocol in M2M communication: A comparative analysis. Telecommun. Syst. 2019, 70, 511–523. [Google Scholar] [CrossRef]
- Shu, Z.; Yan, G. Ensuring deception consistency for ftp services hardened against advanced persistent threats. In Proceedings of the 5th ACM Workshop on Moving Target Defense, Toronto, ON, USA, 15 October 2018; pp. 69–79. [Google Scholar]
- Takada, S.; Sato, A.; Shinjo, Y.; Nakai, H.; Sugiki, A.; Itano, K. A p2p approach to scalable network-booting. In Proceedings of the 2012 Third International Conference on Networking and Computing, Okinawa, Japan, 5–7 December 2012; pp. 201–207. [Google Scholar]
- Hong, B.; Plantenberg, D.; Long, D.D.; Sivan-Zimet, M. Duplicate Data Elimination in a SAN File System. MSST. 2004, pp. 301–314. Available online: https://dblp.org/rec/conf/mss/HongPLS04 (accessed on 10 March 2021).
- Min, J.; Yoon, D.; Won, Y. Efficient deduplication techniques for modern backup operation. IEEE Trans. Comput. 2010, 60, 824–840. [Google Scholar] [CrossRef]
- Muthitacharoen, A.; Chen, B.; Mazieres, D. A low-bandwidth network file system. In Proceedings of the Eighteenth ACM Symposium on Operating Systems Principles, Banff, AB, Canada, 21–24 October 2001; pp. 174–187. [Google Scholar]
- Mandagere, N.; Zhou, P.; Smith, M.A.; Uttamchandani, S. Demystifying data deduplication. In Proceedings of the ACM/IFIP/USENIX Middleware’08 Conference Companion, Leuven, Belgium, 1–5 December 2008; pp. 12–17. [Google Scholar]
- Vegni, A.M.; Natalizio, E. Forwarder smart selection protocol for limitation of broadcast storm problem. J. Netw. Comput. Appl. 2015, 47, 61–71. [Google Scholar] [CrossRef] [Green Version]
- OPC Foundation. Unified Architecture. Available online: https://opcfoundation.org/about/opc-technologies/opc-ua/ (accessed on 10 March 2021).
- Mirkovic, J.; Reiher, P. A taxonomy of DDoS attack and DDoS defense mechanisms. ACM Sigcomm Comput. Commun. Rev. 2004, 34, 39–53. [Google Scholar] [CrossRef]
- Rescorla, E. Rfc2631: Diffie-Hellman Key Agreement Method. Available online: https://dl.acm.org/doi/10.17487/RFC2631 (accessed on 10 March 2021).
Environment | Value |
---|---|
The number of IoT devices | 2000 |
System Image Size | 300 MB |
Total System Image Count | 10 |
Broadcast overhead constant () | 20 |
Duplicated System Image Size | 75 MB (25%) |
Compression Rate | None Scheduling | MEF Scheduling |
---|---|---|
91–99 | 2143.683 | 2140.038 |
81–90 | 6036.156 | 6029.956 |
71–80 | 9507.26 | 9489.135 |
61–70 | 12,329.45 | 12,305 |
51–60 | 14,709 | 14,678.78 |
41–50 | 17,029.78 | 16,999.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, K.-H.; Kim, S.-J.; Yun, J.; Lim, S.-H.; Park, K.-W. FLEX-IoT: Secure and Resource-Efficient Network Boot System for Flexible-IoT Platform. Sensors 2021, 21, 2060. https://doi.org/10.3390/s21062060
Park K-H, Kim S-J, Yun J, Lim S-H, Park K-W. FLEX-IoT: Secure and Resource-Efficient Network Boot System for Flexible-IoT Platform. Sensors. 2021; 21(6):2060. https://doi.org/10.3390/s21062060
Chicago/Turabian StylePark, Keon-Ho, Seong-Jin Kim, Joobeom Yun, Seung-Ho Lim, and Ki-Woong Park. 2021. "FLEX-IoT: Secure and Resource-Efficient Network Boot System for Flexible-IoT Platform" Sensors 21, no. 6: 2060. https://doi.org/10.3390/s21062060
APA StylePark, K. -H., Kim, S. -J., Yun, J., Lim, S. -H., & Park, K. -W. (2021). FLEX-IoT: Secure and Resource-Efficient Network Boot System for Flexible-IoT Platform. Sensors, 21(6), 2060. https://doi.org/10.3390/s21062060