Experimental and Numerical Investigation of the Micro-Crack Damage in Elastic Solids by Two-Way Collinear Mixing Method
Abstract
:1. Introduction
2. Numerical Simulations
2.1. Resonant Condition
2.2. Numerical Modelling
2.3. Numerical Results
2.4. Method of Locating Micro-Crack Region
3. Experimental Measurement
3.1. Preparation of Micro-Crack Damage
3.2. Ultrasonic Measurement
3.3. Experimental Results
4. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Berndt, T.P.; Green, R.E. Feasibility Study of a Nonlinear Ultrasonic Technique to Evaluate Adhesive Ponds; Plenum Press div Plenum Publishing Corp: New York, NY, USA, 1998; pp. 125–131. [Google Scholar]
- Ballad, E.M.; Vezirov, S.Y.; Pfleiderer, K.; Solodov, I.Y.; Busse, G. Nonlinear modulation technique for NDE with air-coupled ultrasound. Ultrasonics 2004, 42, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Hikata, A.; Chick, B.B.; Elbaum, C. Effect of dislocations on finite amplitude ultrasonic waves in aluminum. Appl. Phys. Lett. 1963, 3, 195–197. [Google Scholar] [CrossRef]
- Yost, W.T.; Cantrell, J.H.; Breazeale, M.A. Ultrasonic nonlinearity parameters and third-order elastic-constants of copper between 300 and 3 °K. J. Appl. Phys. 1981, 52, 126–128. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Jacobs, L.J.; Qu, J.; Littles, J.W. Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 2006, 120, 1266–1273. [Google Scholar] [CrossRef]
- Shui, G.; Kim, J.-Y.; Qu, J.; Wang, Y.-S.; Jacobs, L.J. A new technique for measuring the acoustic nonlinearity of materials using Rayleigh waves. NDT E Int. 2008, 41, 326–329. [Google Scholar] [CrossRef]
- Deng, M. Cumulative second-harmonic generation of Lamb-mode propagation in a solid plate. J. Appl. Phys. 1999, 85, 3051–3058. [Google Scholar] [CrossRef]
- Deng, M.; Xiang, Y.; Liu, L. Time-domain analysis and experimental examination of cumulative second-harmonic generation by primary Lamb wave propagation. J. Appl. Phys. 2011, 109, 113525. [Google Scholar] [CrossRef] [Green Version]
- Hikata, A.; Chick, B.B.; Elbaum, C. Dislocation contribution to the second harmonic generation of ultrasonic waves. J. Appl. Phys. 1965, 36, 229–236. [Google Scholar] [CrossRef]
- Jiao, J.; Lv, H.; He, C.; Wu, B. Fatigue crack evaluation using the non-collinear wave mixing technique. Smart Mater. Struct. 2017, 26, 065005. [Google Scholar] [CrossRef]
- Schneider, J.D.; Lu, T.; Tiwari, S.; Zou, X.; Mal, A.; Candler, R.N.; Wang, Y.E.; Carman, G.P. Frequency conversion through nonlinear mixing in acoustic waves. J. Appl. Phys. 2020, 128, 064105. [Google Scholar] [CrossRef]
- Tang, G.; Liu, M.; Jacobs, L.J.; Qu, J. Detecting plastic strain distribution by a nonlinear wave mixing method. AIP Conf. Proc. 2013, 1511, 1204–1211. [Google Scholar]
- Shui, G.; Song, X.; Xi, J.; Wang, Y.S. Experimental Characterization of Impact Fatigue Damage in an Adhesive Bonding Using the Second Harmonics. J. Nondestruct. Eval. 2017, 36, 23. [Google Scholar] [CrossRef]
- Herrmann, J.; Kim, J.-Y.; Jacobs, L.J.; Qu, J.; Littles, J.W.; Savage, M.F. Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves. J. Appl. Phys. 2006, 99, 124913. [Google Scholar] [CrossRef]
- Yang, Y.; Ng, C.T.; Kotousov, A.; Sohn, H.; Lim, H.J. Second harmonic generation at fatigue cracks by low-frequency Lamb waves: Experimental and numerical studies. Mech. Syst. Signal Proc. 2018, 99, 760–773. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Tang, G.; Zhao, Y.; Jacobs, L.J.; Qu, J. Mixing of collinear plane wave pulses in elastic solids with quadratic nonlinearity. J. Acoust. Soc. Am. 2014, 136, 2389–2404. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Qu, J. Necessary and sufficient conditions for resonant mixing of plane waves in elastic solids with quadratic nonlinearity. J. Acoust. Soc. Am. 2020, 148, 1934–1946. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, L.; Gong, Z.; Wang, X.; Yang, J.; Liang, B.; Cheng, J. Two-way collinear mixing of a longitudinal and a transverse plane wave in materials with cubic nonlinearity. Waves Random Complex Media 2020, 2020, 1847358. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Z.; Cao, P.; Qiu, Y. Experiment and FEM study of one-way mixing of elastic waves with quadratic nonlinearity. NDT E Int. 2015, 72, 33–40. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Xu, Y.M.; Chen, Z.M.; Cao, P.; Hu, N. Detection and Characterization of Randomly Distributed Micro-cracks in Elastic Solids by One-Way Collinear Mixing Method. J. Nondestruct. Eval. 2018, 37, 9. [Google Scholar] [CrossRef]
- Tang, G.; Liu, M.; Jacobs, L.J.; Qu, J. Detecting Localized Plastic Strain by a Scanning Collinear Wave Mixing Method. J. Nondestruct. Eval. 2014, 33, 196–204. [Google Scholar] [CrossRef]
- Yuan, B.; Shui, G.; Wang, Y.-S. Evaluating and Locating Plasticity Damage Using Collinear Mixing Waves. J. Mater. Eng. Perform. 2020, 29, 4575–4585. [Google Scholar] [CrossRef]
- Jiao, J.; Sun, J.; Li, N.; Song, G.; Wu, B.; He, C. Micro-crack detection using a collinear wave mixing technique. NDT E Int. 2014, 62, 122–129. [Google Scholar] [CrossRef]
- Morlock, M.B.; Kim, J.-Y.; Jacobs, L.J.; Qu, J. Mixing of Two Collinear Rayleigh Waves in an Isotropic Nonlinear Elastic Half-Space. AIP Conf. Proc. 2014, 1581, 654–661. [Google Scholar]
- Sun, M.; Qu, J. Analytical and numerical investigations of one-way mixing of Lamb waves in a thin plate. Ultrasonics 2020, 108, 106180. [Google Scholar] [CrossRef]
- Chillara, V.K.; Lissenden, C.J. Nonlinear guided waves in plates: A numerical perspective. Ultrasonics 2014, 54, 1553–1558. [Google Scholar] [CrossRef]
- Hasanian, M.; Lissenden, C.J. Second order harmonic guided wave mutual interactions in plate: Vector analysis, numerical simulation, and experimental results. J. Appl. Phys. 2017, 122, 084901. [Google Scholar] [CrossRef]
- Hasanian, M.; Lissenden, C.J. Second order ultrasonic guided wave mutual interactions in plate: Arbitrary angles, internal resonance, and finite interaction region. J. Appl. Phys. 2018, 124, 164904. [Google Scholar] [CrossRef]
- Li, W.B.; Deng, M.X.; Hu, N.; Xiang, Y.X. Theoretical analysis and experimental observation of frequency mixing response of ultrasonic Lamb waves. J. Appl. Phys. 2018, 124, 13. [Google Scholar] [CrossRef]
- Ding, X.; Zhao, Y.; Deng, M.; Shui, G.; Hu, N. One-way Lamb mixing method in thin plates with randomly distributed micro-cracks. Int. J. Mech. Sci. 2020, 171, 105371. [Google Scholar] [CrossRef]
- Li, F.; Zhao, Y.; Cao, P.; Hu, N. Mixing of ultrasonic Lamb waves in thin plates with quadratic nonlinearity. Ultrasonics 2018, 87, 33–43. [Google Scholar] [CrossRef]
- Alston, J.; Croxford, A.; Potter, J.; Blanloeuil, P. Nonlinear non-collinear ultrasonic detection and characterisation of kissing bonds. Ndt E Int. 2018, 99, 105–116. [Google Scholar] [CrossRef]
- Demcenko, A.; Akkerman, R.; Nagy, P.B.; Loendersloot, R. Non-collinear wave mixing for non-linear ultrasonic detection of physical ageing in PVC. NDT E Int. 2012, 49, 34–39. [Google Scholar] [CrossRef]
- Ishii, Y.; Biwa, S.; Adachi, T. Non-collinear interaction of guided elastic waves in an isotropic plate. J. Sound Vib. 2018, 419, 390–404. [Google Scholar] [CrossRef] [Green Version]
- McGovern, M.E.; Buttlar, W.G.; Reis, H. Characterisation of oxidative ageing in asphalt concrete using a non-collinear ultrasonic wave mixing approach. Insight 2014, 56, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Xiang, Y.; Deng, M.; Xu, J.; Xuan, F.-Z. Scanning non-collinear wave mixing for nonlinear ultrasonic detection and localization of plasticity. NDT E Int. 2018, 93, 1–6. [Google Scholar] [CrossRef]
- Zhang, Z.; Nagy, P.B.; Hassan, W. Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface. Ultrasonics 2016, 65, 165–176. [Google Scholar] [CrossRef]
- Croxford, A.J.; Wilcox, P.D.; Drinkwater, B.W.; Nagy, P.B. The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue. J. Acoust. Soc. Am. 2009, 126, EL117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, H.; Zhang, Y.; Li, X.; Huang, Z.; Liao, J.; Guo, Z. Fatigue crack detection and fatigue damage imaging using the non-collinear transverse wave mixing technique. Nondestruct. Test. Eval. 2018, 34, 1–12. [Google Scholar] [CrossRef]
- Lv, H.T.; Zhang, J.; Jiao, J.P.; Croxford, A. Fatigue crack inspection and characterisation using non-collinear shear wave mixing. Smart Mater. Struct. 2020, 29, 14. [Google Scholar] [CrossRef]
- Lv, H.; Jiao, J.; Wu, B.; He, C. Evaluation of Fatigue Crack Orientation Using Non-collinear Shear Wave Mixing Method. J. Nondestruct. Eval. 2018, 37, 74. [Google Scholar] [CrossRef]
- Ishii, Y.; Hiraoka, K.; Adachi, T. Finite-element analysis of non-collinear mixing of two lowest-order antisymmetric Rayleigh-Lamb waves. J. Acoust. Soc. Am. 2018, 144, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Blanloeuil, P.; Rose, L.R.F.; Veidt, M.; Wang, C.H. Nonlinear mixing of non-collinear guided waves at a contact interface. Ultrasonics 2021, 110, 106222. [Google Scholar] [CrossRef] [PubMed]
- Rose, L.R.F.; Blanloeuil, P.; Veidt, M.; Wang, C.H. Analytical and numerical modelling of non-collinear wave mixing at a contact interface. J. Sound Vib. 2020, 468, 115078. [Google Scholar] [CrossRef]
- Fierro, G.P.M.; Ciampa, F.; Ginzburg, D.; Onder, E.; Meo, M. Nonlinear ultrasound modelling and validation of fatigue damage. J. Sound Vib. 2015, 343, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Jinno, K.; Sugawara, A.; Ohara, Y.; Yamanaka, K. Analysis on nonlinear ultrasonic images of vertical closed cracks by damped double node model. Mater. Trans. 2014, 55, 1017–1023. [Google Scholar] [CrossRef] [Green Version]
- Rivière, J.; Remillieux, M.C.; Ohara, Y.; Anderson, B.E.; Haupert, S.; Ulrich, T.J.; Johnson, P.A. Dynamic acousto-elasticity in a fatigue-cracked sample. J. Nondestruct. Eval. 2014, 33, 216–225. [Google Scholar] [CrossRef]
- Guyer, R.A.; TenCate, J.; Johnson, P. Hysteresis and the dynamic elasticity of consolidated granular materials. Phys. Rev. Lett. 1999, 82, 3280–3283. [Google Scholar] [CrossRef] [Green Version]
- Solodov, I.Y.; Krohn, N.; Busse, G. CAN: An example of nonclassical acoustic nonlinearity in solids. Ultrasonics 2002, 40, 621–625. [Google Scholar] [CrossRef]
- Hillis, A.J.; Neild, S.A.; Drinkwater, B.W.; Wilcox, P.D. Global crack detection using bispectral analysis. Proc. R. Soc. Math. Phys. Eng. Sci. 2006, 462, 1515–1530. [Google Scholar] [CrossRef]
- Donskoy, D.; Sutin, A.; Ekimov, A. Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing. NDT E Int. 2001, 34, 231–238. [Google Scholar] [CrossRef]
- Cantrell, J.H.; Yost, W.T. Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 2001, 23, 487–490. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiu, Y.; Jacobs, L.J.; Qu, J. Frequency-dependent tensile and compressive effective moduli of elastic solids with randomly distributed two-dimensional microcracks. J. Appl. Mech. Trans. ASME 2015, 82, 081006. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Liu, H.; Zhao, Y.; Qu, J.; Deng, M.; Hu, N. The zero-frequency component of bulk waves in solids with randomly distributed micro-cracks. Ultrasonics 2020, 107, 106172. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.X.; Li, F.L.; Cao, P.; Liu, Y.L.; Zhang, J.Y.; Fu, S.Y.; Zhang, J.; Hu, N. Generation mechanism of nonlinear ultrasonic Lamb waves in thin plates with randomly distributed micro-cracks. Ultrasonics 2017, 79, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Li, Y.; Su, Z.; Guan, R.; Lu, Y.; Yuan, S. Nonlinear aspects of “breathing” crack-disturbed plate waves: 3-D analytical modeling with experimental validation. Int. J. Mech. Sci. 2019, 159, 140–150. [Google Scholar] [CrossRef]
- Jiao, J.; Meng, X.; He, C.; Wu, B. Nonlinear Lamb wave-mixing technique for micro-crack detection in plates. NDT E Int. 2017, 85, 63–71. [Google Scholar]
- Zhu, Z.; Li, G.; Dai, G.; Zhao, J.; Xu, L.; Zhang, Q. Mechanisms and new parameter attribute reduction of high-speed railway wheel rim steel subjected to low temperature fatigue. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 2016, 673, 476–491. [Google Scholar] [CrossRef]
- Umezawa, O.; Nagai, K. Subsurface crack generation in high-cycle fatigue for high strength alloys. ISIJ Int. 1997, 37, 1170–1179. [Google Scholar] [CrossRef]
- Jianxin, Z.; Yajun, S. Cayses and solution for white spots in anodic oxidation of tupe 6063 merchant aluminum alloy. Electroplat. Finish. 2002, 1, 66–68. [Google Scholar]
Simulation Results | Theoretical Models | Errors | ||||
---|---|---|---|---|---|---|
L (mm) | L1 (mm) | L2 (mm) | L1 (mm) | L2 (mm) | L1 (%) | L2 (%) |
50 | 21.24 | 5.05 | 21 | 5 | 1.14 | 1.20 |
50 | 26.08 | 4.12 | 26 | 4 | 3.10 | 3.00 |
80 | 34.98 | 9.83 | 35.00 | 10 | 0.05 | 1.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhao, Y.; Zhang, H.; Deng, M.; Hu, N.; Bi, X. Experimental and Numerical Investigation of the Micro-Crack Damage in Elastic Solids by Two-Way Collinear Mixing Method. Sensors 2021, 21, 2061. https://doi.org/10.3390/s21062061
Liu H, Zhao Y, Zhang H, Deng M, Hu N, Bi X. Experimental and Numerical Investigation of the Micro-Crack Damage in Elastic Solids by Two-Way Collinear Mixing Method. Sensors. 2021; 21(6):2061. https://doi.org/10.3390/s21062061
Chicago/Turabian StyleLiu, Hongjun, Youxuan Zhao, Han Zhang, Mingxi Deng, Ning Hu, and Xiaoyang Bi. 2021. "Experimental and Numerical Investigation of the Micro-Crack Damage in Elastic Solids by Two-Way Collinear Mixing Method" Sensors 21, no. 6: 2061. https://doi.org/10.3390/s21062061
APA StyleLiu, H., Zhao, Y., Zhang, H., Deng, M., Hu, N., & Bi, X. (2021). Experimental and Numerical Investigation of the Micro-Crack Damage in Elastic Solids by Two-Way Collinear Mixing Method. Sensors, 21(6), 2061. https://doi.org/10.3390/s21062061