Characterizing the Performance of a Compact BTEX GC-PID for Near-Real Time Analysis and Field Deployment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Prototype of a Compact BTEX GC-PID System
2.1.1. System Integration and Instrument Operation
2.1.2. Sampling Module
2.1.3. Preconcentration Module: Tenax-GR Trap
2.1.4. Separation Module
- Precolumn backflush to vent (configuration a and c): This method captures heavier molecules in the precolumn and prevents them from entering the analytical column and reaching the detector. The backflush is carried out at a user defined time to reject water and other high boiling point analytes while the analytical column runs at a constant flow. This configuration has the advantage of the sample matrix having little influence on measurement, allows faster sampling time, prevents late eluting compounds from interfering with the subsequent runs, and prevents water in the sample matrix from reaching the column.
- Backflush to detector (configuration b): This method bundles C6+ components that elute to the detector after the molecules of interest have passed through the analytical column. This method reduces analysis time and presents a summed total of C6+ molecules displayed in the chromatogram. It also prevents late eluting compounds from interfering with the subsequent runs.
2.1.5. Detection Module
2.2. Gas Standards and Carrier Gas
2.3. Calibration Methods
2.4. Field Deployments
3. Results
3.1. Instrument Characterization
3.1.1. Linearity of the System
3.1.2. Detector Signal vs. Sample Volume
3.1.3. Detection Limit
3.1.4. System Drift
3.1.5. Humidity Effects
3.1.6. Validation with Conventional Canister Sampling
3.2. Mobile Measurements of Traffic Emissions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO IARC Monographics on the Evaluations of Carcinogenic Risks to Humans. Available online: https://monographs.iarc.fr/wp-content/uploads/2018/06/mono98.pdf (accessed on 6 January 2021).
- Calvert, J.G.; Atkinson, R.; Becker, K.H.; Kamens, R.M.; Seinfeld, J.H.; Wallington, T.H.; Yarwood, G. The Mechanisms of Atmospheric Oxidation of the Aromatic Hydrocarbons; Oxford University Press: Oxford, UK, 2002; ISBN 978-0-19-977154-7. [Google Scholar]
- Interaction Profile for: Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX); Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2004.
- Bretón, J.G.C.; Bretón, R.M.C.; Ucan, F.V.; Baeza, C.B.; de la Luz Espinosa Fuentes, M.; Lara, E.R.; Marrón, M.R.; Pacheco, J.A.M.; Guzmán, A.R.; Chi, M.P.U. Characterization and Sources of Aromatic Hydrocarbons (BTEX) in the Atmosphere of Two Urban Sites Located in Yucatan Peninsula in Mexico. Atmosphere 2017, 8, 107. [Google Scholar] [CrossRef] [Green Version]
- Koss, A.R.; Sekimoto, K.; Gilman, J.B.; Selimovic, V.; Coggon, M.M.; Zarzana, K.J.; Yuan, B.; Lerner, B.M.; Brown, S.S.; Jimenez, J.L.; et al. Non-Methane Organic Gas Emissions from Biomass Burning: Identification, Quantification, and Emission Factors from PTR-ToF during the FIREX 2016 Laboratory Experiment. Atmos. Chem. Phys. 2018, 18, 3299–3319. [Google Scholar] [CrossRef] [Green Version]
- Marrero, J.E.; Townsend-Small, A.; Lyon, D.R.; Tsai, T.R.; Meinardi, S.; Blake, D.R. Estimating Emissions of Toxic Hydrocarbons from Natural Gas Production Sites in the Barnett Shale Region of Northern Texas. Environ. Sci. Technol. 2016, 50, 10756–10764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Dell, K.; Hornbrook, R.S.; Permar, W.; Levin, E.J.T.; Garofalo, L.A.; Apel, E.C.; Blake, N.J.; Jarnot, A.; Pothier, M.A.; Farmer, D.K.; et al. Hazardous Air Pollutants in Fresh and Aged Western US Wildfire Smoke and Implications for Long-Term Exposure. Environ. Sci. Technol. 2020, 54, 11838–11847. [Google Scholar] [CrossRef] [PubMed]
- Houghton, M.; Dodge, D.; Krieger, R.; Johnson, J.; Mazur, L.; Pomales, T. Update to the Toxic Air Contaminant List; California Air Resources Board: Sacramento, CA, USA, 1999; p. 44.
- Sekar, A.; Varghese, G.K.; Ravi Varma, M.K. Analysis of Benzene Air Quality Standards, Monitoring Methods and Concentrations in Indoor and Outdoor Environment. Heliyon 2019, 5, e02918. [Google Scholar] [CrossRef] [Green Version]
- Bolden, A.L.; Kwiatkowski, C.F.; Colborn, T. New Look at BTEX: Are Ambient Levels a Problem? Environ. Sci. Technol. 2015, 49, 5261–5276. [Google Scholar] [CrossRef] [PubMed]
- ATSDR—Toxic Substances—Benzene. Available online: https://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=14 (accessed on 5 February 2021).
- Bolden, A.L.; Schultz, K.; Pelch, K.E.; Kwiatkowski, C.F. Exploring the Endocrine Activity of Air Pollutants Associated with Unconventional Oil and Gas Extraction. Environ. Health 2018, 17, 26. [Google Scholar] [CrossRef] [Green Version]
- Wilbur, S.; Wohlers, D.; Paikoff, S.; Keith, L.; Faroon, O. ATSDR Evaluation of Health Effects of Benzene and Relevance to Public Health. Toxicol. Ind. Health 2008, 24, 263–398. [Google Scholar] [CrossRef]
- ATSDR Toxicological Profile: Toluene. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=161&tid=29 (accessed on 5 February 2021).
- ATSDR—Toxic Substances—Ethylbenzene. Available online: https://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=66 (accessed on 5 February 2021).
- ATSDR—Toxic Substances—Xylenes. Available online: https://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=53 (accessed on 5 February 2021).
- Weisel, C.P. Benzene Exposure: An Overview of Monitoring Methods and Their Findings. Chem.-Biol. Interact. 2010, 184, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Karl, T.; Apel, E.; Hodzic, A.; Riemer, D.D.; Blake, D.R.; Wiedinmyer, C. Emissions of Volatile Organic Compounds Inferred from Airborne Flux Measurements over a Megacity. Atmos. Chem. Phys. 2009, 9, 271–285. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Mu, Y.; Zhang, Y.; Zhang, Z.; Wang, X.; Liu, Y.; Sun, Z. Atmospheric Levels of BTEX Compounds during the 2008 Olympic Games in the Urban Area of Beijing. Sci. Total Environ. 2009, 408, 109–116. [Google Scholar] [CrossRef]
- Zeng, P.; Guo, H.; Cheng, H.; Wang, Z.; Zeng, L.; Lyu, X.; Zhan, L.; Yang, Z. Aromatic Hydrocarbons in Urban and Suburban Atmospheres in Central China: Spatiotemporal Patterns, Source Implications, and Health Risk Assessment. Atmosphere 2019, 10, 565. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.K.; Beyersdorf, A.J.; Doezema, L.A.; Katzenstein, A.; Meinardi, S.; Simpson, I.J.; Blake, D.R.; Sherwood Rowland, F. Measurements of Nonmethane Hydrocarbons in 28 United States Cities. Atmos. Environ. 2008, 42, 170–182. [Google Scholar] [CrossRef] [Green Version]
- Gilman, J.B.; Kuster, W.C.; Goldan, P.D.; Herndon, S.C.; Zahniser, M.S.; Tucker, S.C.; Brewer, W.A.; Lerner, B.M.; Williams, E.J.; Harley, R.A.; et al. Measurements of Volatile Organic Compounds during the 2006 TexAQS/GoMACCS Campaign: Industrial Influences, Regional Characteristics, and Diurnal Dependencies of the OH Reactivity. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Sultana, D.; Hoover, S. GASOLINE-RELATED AIR POLLUTANTS IN CALIFORNIA-TRENDS IN EXPOSURE AND HEALTH RISK, 1996 TO 2014; Office of Environmental Health Hazard Assessment: Sacramento, CA, USA, 2018; p. 423.
- Propper, R.; Wong, P.; Bui, S.; Austin, J.; Vance, W.; Alvarado, Á.; Croes, B.; Luo, D. Ambient and Emission Trends of Toxic Air Contaminants in California. Environ. Sci. Technol. 2015, 49, 11329–11339. [Google Scholar] [CrossRef] [Green Version]
- Halliday, H.S.; Thompson, A.M.; Wisthaler, A.; Blake, D.R.; Hornbrook, R.S.; Mikoviny, T.; Müller, M.; Eichler, P.; Apel, E.C.; Hills, A.J. Atmospheric Benzene Observations from Oil and Gas Production in the Denver-Julesburg Basin in July and August 2014. J. Geophys. Res. Atmos. 2016, 121, 11055–11074. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, G.; Bajracharya, A.; Durbin, T.A.; McGarry, J.K.; Miller, D.D.; Moser, E.P.; Nunez, L.A.; Pukkila, E.J.; Scott, P.S.; Sutton, P.J. Ground-Based Measurements of Volatile Organic Compounds in Wildfire Smoke during FIREX-AQ Campaign. In Proceedings of the Americal Geophysical Union Fall Meeting, 1–17 December 2020; Available online: https://agu.confex.com/agu/fm20/meetingapp.cgi/Paper/755061 (accessed on 16 March 2021).
- USGCRP Fourth National Climate Assessment. Available online: https://nca2018.globalchange.gov (accessed on 5 February 2021).
- Liaud, C.; Nguyen, N.T.; Nasreddine, R.; Le Calvé, S. Experimental Performances Study of a Transportable GC-PID and Two Thermo-Desorption Based Methods Coupled to FID and MS Detection to Assess BTEX Exposure at sub-ppb Level in Air. Talanta 2014, 127, 33–42. [Google Scholar] [CrossRef]
- Scott, P.S.; Andrew, J.P.; Bundy, B.A.; Grimm, B.K.; Hamann, M.A.; Ketcherside, D.T.; Li, J.; Manangquil, M.Y.; Nuñez, L.A.; Pittman, D.L.; et al. Observations of Volatile Organic and Sulfur Compounds in Ambient Air and Health Risk Assessment near a Paper Mill in Rural Idaho, USA. Atmos. Pollut. Res. 2020, 11, 1870–1881. [Google Scholar] [CrossRef] [PubMed]
- Parsons, M.T.; Sydoryk, I.; Lim, A.; McIntyre, T.J.; Tulip, J.; Jäger, W.; McDonald, K. Real-Time Monitoring of Benzene, Toluene, and p-Xylene in a Photoreaction Chamber with a Tunable Mid-Infrared Laser and Ultraviolet Differential Optical Absorption Spectroscopy. Appl. Opt. 2011, 50, A90–A99. [Google Scholar] [CrossRef] [PubMed]
- Young, C.R.; Menegazzo, N.; Riley, A.E.; Brons, C.H.; DiSanzo, F.P.; Givens, J.L.; Martin, J.L.; Disko, M.M.; Mizaikoff, B. Infrared Hollow Waveguide Sensors for Simultaneous Gas Phase Detection of Benzene, Toluene, and Xylenes in Field Environments. Anal. Chem. 2011, 83, 6141–6147. [Google Scholar] [CrossRef]
- Sahu, L.K.; Pal, D.; Yadav, R.; Munkhtur, J. Aromatic VOCs at Major Road Junctions of a Metropolis in India: Measurements Using TD-GC-FID and PTR-TOF-MS Instruments. Aerosol Air Qual. Res. 2016, 16, 2405–2420. [Google Scholar] [CrossRef] [Green Version]
- Warneke, C.; De Gouw, J.A.; Holloway, J.S.; Peischl, J.; Ryerson, T.B.; Atlas, E.; Blake, D.; Trainer, M.; Parrish, D.D. Multiyear Trends in Volatile Organic Compounds in Los Angeles, California: Five Decades of Decreasing Emissions. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Warneke, C.; Roberts, J.M.; Veres, P.; Gilman, J.; Kuster, W.C.; Burling, I.; Yokelson, R.; De Gouw, J.A. VOC Identification and Inter-Comparison from Laboratory Biomass Burning Using PTR-MS and PIT-MS. Int. J. Mass Spectrom. 2011, 303, 6–14. [Google Scholar] [CrossRef]
- Yuan, H.; Li, N.; Linghu, J.; Dong, J.; Wang, Y.; Karmakar, A.; Yuan, J.; Li, M.; Buenconsejo, P.J.S.; Liu, G.; et al. Chip-Level Integration of Covalent Organic Frameworks for Trace Benzene Sensing. ACS Sensors 2020, 5, 1474–1481. [Google Scholar] [CrossRef] [PubMed]
- Sydoryk, I.; Lim, A.; Jäger, W.; Tulip, J.; Parsons, M.T. Detection of Benzene and Toluene Gases Using a Midinfrared Continuous-Wave External Cavity Quantum Cascade Laser at Atmospheric Pressure. Applied Optics 2010, 49, 945–949. [Google Scholar] [CrossRef] [Green Version]
- Bill Text-AB-617 Nonvehicular Air Pollution: Criteria Air Pollutants and Toxic Air Contaminants. Available online: https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB617 (accessed on 6 January 2021).
- Spinelle, L.; Gerboles, M.; Kok, G.; Persijn, S.; Sauerwald, T. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds. Sensors 2017, 17, 1520. [Google Scholar] [CrossRef] [Green Version]
- Lara-lbeas, I.; Rodríguez-Cuevas, A.; Andrikopoulou, C.; Person, V.; Baldas, L.; Colin, S.; Le Calvé, S. Sub-Ppb Level Detection of BTEX Gaseous Mixtures with a Compact Prototype GC Equipped with a Preconcentration Unit. Micromachines 2019, 10, 187. [Google Scholar] [CrossRef] [Green Version]
- Skog, K.M.; Xiong, F.; Kawashima, H.; Doyle, E.; Soto, R.; Gentner, D.R. Compact, Automated, Inexpensive, and Field-Deployable Vacuum-Outlet Gas Chromatograph for Trace-Concentration Gas-Phase Organic Compounds. Anal. Chem. 2019, 91, 1318–1327. [Google Scholar] [CrossRef]
- Jian, R.-S.; Huang, Y.-S.; Lai, S.-L.; Sung, L.-Y.; Lu, C.-J. Compact Instrumentation of a μ-GC for Real Time Analysis of Sub-Ppb VOC Mixtures. Microchem. J. 2013, 108, 161–167. [Google Scholar] [CrossRef]
- Laboratory Quality Control Manual; California Air Resources Board: Sacramento, CA, USA, 2018.
- Colman, J.J.; Swanson, A.L.; Meinardi, S.; Sive, B.C.; Blake, D.R.; Rowland, F.S. Description of the Analysis of a Wide Range of Volatile Organic Compounds in Whole Air Samples Collected during PEM-Tropics A and B. Anal. Chem. 2001, 73, 3723–3731. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Ho, S.S.H.; Xue, Y.; Huang, Y.; Wang, L.; Cheng, Y.; Dai, W.; Zhong, H.; Cao, J.; Lee, S. Characterizations of Volatile Organic Compounds (VOCs) from Vehicular Emissions at Roadside Environment: The First Comprehensive Study in Northwestern China. Atmos. Environ. 2017, 161, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Megias-Sayago, C.; Lara-Ibeas, I.; Wang, Q.; Le Calvé, S.; Louis, B. Volatile Organic Compounds (VOCs) Removal Capacity of ZSM-5 Zeolite Adsorbents for near Real-Time BTEX Detection. J. Environ. Chem. Eng. 2020, 8, 103724. [Google Scholar] [CrossRef]
- Sorrels, J.L.; Baynham, A.; Randall, D.D.; Schaffner, K.S. Chapter 1—Carbon Adsorbers. In EPA Air Pollution Control Cost Manual; U.S. Environmental Protection Agency: Washington, DC, USA, 2018. [Google Scholar]
- You, D.W.; Seon, Y.S.; Jang, Y.; Bang, J.; Oh, J.S.; Jung, K.W. A Portable Gas Chromatograph for Real-Time Monitoring of Aromatic Volatile Organic Compounds in Air Samples. J. Chromatogr. A 2020, 1625, 461267. [Google Scholar] [CrossRef] [PubMed]
Configuration | Capillary Columns | Backflush Method | Analysis Time (min) | Limit of Detection (ppb) |
---|---|---|---|---|
a (Figure 3a) | 15 m MXT-WAX 15 m MXT-1 | Precolumn backflush | 12 | Benzene 0.09 Toluene 0.10 |
b (Figure 3b) | 15 m MXT-WAX 15 m MXT-1 | Backflush to detector | <20 | Benzene 0.37 Toluene 0.11 |
c (Figure 3c) | 15 m MXT-5 30 m MXT-1301 | Precolumn backflush | <15 | Benzene 0.06 Toluene 0.10 |
Compound | Date | Calibration Equation | SD of Slope | R2 | %SD | N |
---|---|---|---|---|---|---|
Benzene | 2/22/2020 | y = 7.38x | 1.10 | 0.97 | 7.38 | 4 |
2/24/2020 | y = 5.60x | 0.80 | 0.97 | 5.67 | 4 | |
2/27/2020 | y = 6.87x | 1.50 | 0.97 | 6.79 | 3 | |
Toluene | 2/22/2020 | y = 11.56x | 0.60 | 1.00 | 11.11 | 4 |
2/24/2020 | y = 10.99x | 0.90 | 1.00 | 11.11 | 4 | |
2/27/2020 | y = 10.95x | 1.30 | 0.97 | 10.74 | 3 | |
Ethylbenzene | 2/22/2020 | y = 6.57x | 0.30 | 0.99 | 6.12 | 4 |
2/24/2020 | y = 5.25x | 0.80 | 0.97 | 5.00 | 4 | |
2/27/2020 | y = 7.18x | 1.20 | 0.89 | 7.36 | 3 | |
m,p-xylene | 2/22/2020 | y = 9.24x | 1.00 | 0.96 | 9.35 | 3 |
2/24/2020 | y = 8.44x | 0.80 | 0.98 | 8.33 | 4 | |
2/27/2020 | y = 9.13x | 1.60 | 0.91 | 9.36 | 3 | |
o-Xylene | 2/22/2020 | y = 2.80x | 0.90 | 0.90 | 2.89 | 4 |
2/24/2020 | y = 2.67x | 0.70 | 0.99 | 2.68 | 3 | |
2/27/2020 | y = 4.23x | 1.10 | 0.98 | 4.26 | 3 |
Compound | GC1 (ppb) | GC2 (ppb) |
---|---|---|
Benzene | 0.06 | 0.19 |
Toluene | 0.10 | 0.28 |
Ethylbenzene | 0.37 | 0.18 |
m,p-Xylene | 0.33 | 0.32 |
o-Xylene | 0.21 | 0.16 |
Date | N | Benzene (a.u.) | |
---|---|---|---|
10/9/2019 | 7 | 13.51 | (0.19) |
11/25/2019 | 1 | 19.24 | NA |
1/7/2020 | 1 | 15.72 | NA |
1/14/2020 | 4 | 12.42 | (0.11) |
2/19/2020 | 1 | 16.92 | NA |
2/20/2020 | 3 | 14.94 | (0.47) |
2/22/2020 | 4 | 14.15 | (0.51) |
2/24/2020 | 1 | 10.65 | NA |
2/27/2020 | 1 | 13.59 | NA |
3/5/2020 | 3 | 11.45 | (0.11) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frausto-Vicencio, I.; Moreno, A.; Goldsmith, H.; Hsu, Y.-K.; Hopkins, F.M. Characterizing the Performance of a Compact BTEX GC-PID for Near-Real Time Analysis and Field Deployment. Sensors 2021, 21, 2095. https://doi.org/10.3390/s21062095
Frausto-Vicencio I, Moreno A, Goldsmith H, Hsu Y-K, Hopkins FM. Characterizing the Performance of a Compact BTEX GC-PID for Near-Real Time Analysis and Field Deployment. Sensors. 2021; 21(6):2095. https://doi.org/10.3390/s21062095
Chicago/Turabian StyleFrausto-Vicencio, Isis, Alondra Moreno, Hugh Goldsmith, Ying-Kuang Hsu, and Francesca M. Hopkins. 2021. "Characterizing the Performance of a Compact BTEX GC-PID for Near-Real Time Analysis and Field Deployment" Sensors 21, no. 6: 2095. https://doi.org/10.3390/s21062095
APA StyleFrausto-Vicencio, I., Moreno, A., Goldsmith, H., Hsu, Y.-K., & Hopkins, F. M. (2021). Characterizing the Performance of a Compact BTEX GC-PID for Near-Real Time Analysis and Field Deployment. Sensors, 21(6), 2095. https://doi.org/10.3390/s21062095