A Generative Method for Indoor Localization Using Wi-Fi Fingerprinting
Abstract
:1. Introduction
- To model the Wi-Fi signal received from a WAP by means of an HMM to preserve the temporal autocorrelation present in real data.
- To estimate indoor user’s location by means of the forward algorithm for HMM.
- To compare the performance of the proposed method with the performances of other well-known Machine Learning algorithms used for indoor localization through extensive experiments.
2. Previous Work
3. Background
3.1. Wi-Fi Received Signal Strength Indicator Modeling
3.2. Wi-Fi Fingerprinting for Indoor Localization
3.3. Machine Learning for Indoor Localization
3.4. Hidden Markov Models
- The number of hidden states H. An individual state is denoted as:
- The number of different observation symbols M. An individual symbol is denoted as:
- The probability distributions for transitions between two states:
- The probability distribution for observing a symbol in state j:
- The probability distributions for initial states:
4. Methods
4.1. Wi-Fi Received Signal Strength Indicator Modeling
4.2. Location Algorithm
4.2.1. Offline Phase
4.2.2. Online Phase
5. Experiments and Results
5.1. Data Acquisition and Preparation
5.2. Performance Comparison
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maskeliūnas, R.; Damaševičius, R.; Segal, S. A Review of Internet of Things Technologies for Ambient Assisted Living Environments. Future Internet 2019, 11, 259. [Google Scholar] [CrossRef] [Green Version]
- Nižetić, S.; Šolić, P.; López-de-Ipiña González-de-Artaza, D.; Patrono, L. Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future. J. Clean. Prod. 2020, 274, 122877. [Google Scholar] [CrossRef]
- Zhuang, Y.; Yang, J.; Li, Y.; Qi, L.; El-Sheimy, N. Smartphone-Based Indoor Localization with Bluetooth Low Energy Beacons. Sensors 2016, 16, 596. [Google Scholar] [CrossRef] [Green Version]
- Cobos, M.; Perez-Solano, J.J.; Belmonte, O.; Ramos, G.; Torres, A.M. Simultaneous ranging and self-positioning in unsynchronized wireless acoustic sensor networks. IEEE Trans. Signal Process. 2016, 64, 5993–6004. [Google Scholar] [CrossRef] [Green Version]
- Dawes, B.; Chin, K.W. A comparison of deterministic and probabilistic methods for indoor localization. J. Syst. Softw. 2010, 84, 442–451. [Google Scholar] [CrossRef]
- Li, M.; Liu, N.; Niu, Q.; Liu, C.; Chan, S.H.G.; Gao, C. SweepLoc: Automatic Video-Based Indoor Localization by Camera Sweeping. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2. [Google Scholar] [CrossRef]
- Pirzada, N.; Nayan, M.Y.; Subhan, F.; Hassan, M.F.; Khan, M.A. Comparative Analysis of Active and Passive Indoor Localization Systems. AASRI Procedia 2013, 5, 92–97. [Google Scholar] [CrossRef]
- Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M.A.; Al-Khalifa, H.S. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances. Sensors 2016, 16, 707. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Guo, S.; Wu, Y.; Yang, Y. A fine-grained indoor fingerprinting localization based on magnetic field strength and channel state information. Pervasive Mob. Comput. 2017, 41, 150–165. [Google Scholar] [CrossRef]
- Ni, L.M.; Liu, L.; Lau, Y.C.; Patil, A.P. LANDMARC: Indoor location sensing using active RFID. In Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, (PerCom 2003), Fort Worth, TX, USA, 23–26 March 2003; pp. 407–415. [Google Scholar] [CrossRef]
- Belmonte-Fernández, O.; Puertas-Cabedo, A.; Torres-Sospedra, J.; Montoliu-Colás, R.; Trilles-Oliver, S. An Indoor Positioning System Based on Wearables for Ambient-Assisted Living. Sensors 2017, 17, 36. [Google Scholar] [CrossRef]
- He, S.; Chan, S.H.H. Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Commun. Surv. Tutorials 2016, 18, 466–490. [Google Scholar] [CrossRef]
- Mohamed, E.M.; Sakaguchi, K.; Sampei, S. Millimeter wave beamforming based on WiFi fingerprinting in indoor environment. In Proceedings of the 2015 IEEE International Conference on Communication Workshop (ICCW), London, UK, 8–12 June 2015; pp. 1155–1160. [Google Scholar] [CrossRef] [Green Version]
- Makki, A.; Siddig, A.; Saad, M.; Bleakley, C. Survey of WiFi positioning using time-based techniques. Comput. Netw. 2015, 88, 218–233. [Google Scholar] [CrossRef] [Green Version]
- Youssef, M.; Agrawala, A. The Horus location determination system. Wirel. Netw. 2008, 14, 357–374. [Google Scholar] [CrossRef]
- Kotaru, M.; Joshi, K.; Bharadia, D.; Katti, S. SpotFi: Decimeter Level Localization Using WiFi. SIGCOMM Comput. Commun. Rev. 2015, 45, 269–282. [Google Scholar] [CrossRef]
- Zucchini, W.; MacDonald, I.L.; Langrock, R. Hidden Markov Models for Time Series: An Introduction Using R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2016. [Google Scholar]
- Baum, L.E.; Petrie, T.; Soules, G.; Weiss, N. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat. 1970, 41, 164–171. [Google Scholar] [CrossRef]
- Obeidat, H.; Shuaieb, W.; Obeidat, O.; Abd-Alhameed, R. A Review of Indoor Localization Techniques and Wireless Technologies. Wirel. Pers. Commun. 2021, 1–39. [Google Scholar] [CrossRef]
- Dang, X.; Si, X.; Hao, Z.; Huang, Y. A Novel Passive Indoor Localization Method by Fusion CSI Amplitude and Phase Information. Sensors 2019, 19, 875. [Google Scholar] [CrossRef] [Green Version]
- Bahl, P.; Padmanabhan, V.N. RADAR: An in-building RF-based user location and tracking system. In Proceedings of the IEEE INFOCOM 2000, Conference on Computer Communications, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064), Tel Aviv, Israel, 26–30 March 2000; Volume 2, pp. 775–784. [Google Scholar] [CrossRef]
- Roos, T.; Myllymäki, P.; Tirri, H.; Misikangas, P.; Sievänen, J. A Probabilistic Approach to WLAN User Location Estimation. Int. J. Wirel. Inf. Netw. 2002, 9. [Google Scholar] [CrossRef]
- Kushki, A.; Plataniotis, K.N.; Venetsanopoulos, A.N. Kernel-Based Positioning in Wireless Local Area Networks. IEEE Trans. Mob. Comput. 2007, 6, 689–705. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.; Gaoming, H.; Shiqiong, S. WLAN user location estimation based on receiving signal strength indicator. In Proceedings of the 5th International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2009, Beijing, China, 24–26 September 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Bisio, I.; Lavagetto, F.; Marchese, M.; Sciarrone, A. Smart probabilistic fingerprinting for WiFi-based indoor positioning with mobile devices. Pervasive Mob. Comput. 2016, 31, 107–123. [Google Scholar] [CrossRef]
- Carrera, V.J.L.; Zhao, Z.; Braun, T. Room Recognition Using Discriminative Ensemble Learning with Hidden Markov Models for Smartphones. In Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 9–12 September 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Roy, P.; Chowdhury, C.; Kundu, M.; Ghosh, D.; Bandyopadhyay, S. Novel weighted ensemble classifier for smartphone based indoor localization. Expert Syst. Appl. 2021, 164, 113758. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, J.; Li, Z.; Zhao, L. Robust and Accurate Wi-Fi Fingerprint Location Recognition Method Based on Deep Neural Network. Appl. Sci. 2020, 10, 321. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Tan, T.; Gong, Y.; Yang, W. Fingerprint Database Reconstruction Based on Robust PCA for Indoor Localization. Sensors 2019, 19, 2537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belmonte-Fernández, O.; Montoliu, R.; Torres-Sospedra, J.; Sansano-Sansano, E.; Chia-Aguilar, D. A radiosity-based method to avoid calibration for indoor positioning systems. Expert Syst. Appl. 2018, 105, 89–101. [Google Scholar] [CrossRef]
- Kaemarungsi, K.; Krishnamurthy, P. Properties of indoor received signal strength for WLAN location fingerprinting. In Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, MOBIQUITOUS 2004, Boston, MA, USA, 22–26 August 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 14–23. [Google Scholar]
- Kaemarungsi, K.; Krishnamurthy, P. Analysis of WLAN’s received signal strength indication for indoor location fingerprinting. Pervasive Mob. Comput. 2012, 8, 292–316. [Google Scholar] [CrossRef]
- Bose, A.; Foh, C.H. A practical path loss model for indoor WiFi positioning enhancement. In Proceedings of the Information, Communications & Signal Processing, 2007 6th International Conference on IEEE, Minneapolis, MN, USA, 28–30 June 2007; pp. 1–5. [Google Scholar]
- Liu, H.; Darabi, H.; Banerjee, P.; Liu, J. Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2007, 37, 1067–1080. [Google Scholar] [CrossRef]
- Yiu, S.; Dashti, M.; Claussen, H.; Perez-Cruz, F. Wireless RSSI fingerprinting localization. Signal Process. 2017, 131, 235–244. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation; Technical Report; California Univ San Diego La Jolla Inst for Cognitive Science: La Jolla, CA, USA, 1985. [Google Scholar]
- Saleem, F.; Wyne, S. Wlan–Based Indoor Localization Using Neural Networks. J. Electr. Eng. 2016, 67. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Wang, L.; Qin, Z.; Zheng, X.; Sun, L.; Jin, N.; Shu, L. INBS: An Improved Naive Bayes Simple learning approach for accurate indoor localization. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, Australia, 10–14 June 2014; pp. 148–153. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Jedari, E.; Zheng, W.; Rashidzadeh, R.; Saif, M. Wi-Fi based indoor location positioning employing random forest classifier. In Proceedings of the 2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Banff, AB, Canada, 13–16 October 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Calderoni, L.; Ferrara, M.; Franco, A.; Maio, D. Indoor localization in a hospital environment using Random Forest classifiers. Expert Syst. Appl. 2015, 42, 125–134. [Google Scholar] [CrossRef]
- Wang, Y.; Xiu, C.; Zhang, X.; Yang, D. WiFi Indoor Localization with CSI Fingerprinting-Based Random Forest. Sensors 2018, 18, 2869. [Google Scholar] [CrossRef] [Green Version]
- Rabiner, L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 1989, 77, 257–286. [Google Scholar] [CrossRef]
- Jurafsky, D. Speech & Language Processing; Pearson Education India: Chennai, India, 2000. [Google Scholar]
- Brockwell, P.J.; Davis, R.A.; Fienberg, S.E. Time Series: Theory and Methods; Springer Science & Business Media: New York, NY, USA, 1991. [Google Scholar]
- McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan; CRC Press: Boca Raton, FL, USA, 2016; Volume 122. [Google Scholar]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Statist. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Sabanci, K.; Yigit, E.; Ustun, D.; Toktas, A.; Aslan, M.F. WiFi Based Indoor Localization: Application and Comparison of Machine Learning Algorithms. In Proceedings of the 2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), Tbilisi, Georgia, 24–27 September 2018; pp. 246–251. [Google Scholar] [CrossRef]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. SIGKDD Explor. 2009, 11, 10–18. [Google Scholar] [CrossRef]
- Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
- Nemenyi, P. Distribution-free multiple comparisons. In Biometrics. International Biometric Soc 1441 I ST, NW, SUITE 700, WASHINGTON, DC 20005-2210; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1962; Volume 18, p. 263. [Google Scholar]
- Leng, Y.; Musiek, E.S.; Hu, K.; Cappuccio, F.P.; Yaffe, K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 2019, 18, 307–318. [Google Scholar] [CrossRef]
- Dawadi, P.N.; Cook, D.J.; Schmitter-Edgecombe, M. Automated cognitive health assessment from smart home-based behavior data. IEEE J. Biomed. Health Inform. 2015, 20, 1188–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harada, K.; Lee, S.; Lee, S.; Bae, S.; Harada, K.; Suzuki, T.; Shimada, H. Objectively-measured outdoor time and physical and psychological function among older adults. Geriatr. Gerontol. Int. 2016, 17, 1455–1462. [Google Scholar] [CrossRef] [Green Version]
- Alberdi, A.; Weakley, A.; Schmitter-Edgecombe, M.; Cook, D.J.; Aztiria, A.; Basarab, A.; Barrenechea, M. Smart Home-Based Prediction of Multidomain Symptoms Related to Alzheimer’s Disease. IEEE J. Biomed. Health Inform. 2018, 22, 1720–1731. [Google Scholar] [CrossRef] [Green Version]
- Galambos, C.; Skubic, M.; Wang, S.; Rantz, M. Management of dementia and depression utilizing in-home passive sensor data. Gerontechnol. Int. J. Fundam. Asp. Technol. Serve Ageing Soc. 2013, 11, 457. [Google Scholar] [CrossRef] [Green Version]
Entropy | ||
---|---|---|
Real data | 2.633 | |
KL-divergence | Cross-Entropy | |
Gaussian simulated | 0.121 ± 0.018 | 2.752 ± 0.018 |
HMM (2 states) simulated | 0.023 ± 0.001 | 2.655 ± 0.024 |
HMM (3 states) simulated | 0.023 ± 0.001 | 2.656 ± 0.022 |
HMM (4 states) simulated | 0.024 ± 0.001 | 2.658 ± 0.024 |
Environment | Number of | Total | Test Samples at | |||||
---|---|---|---|---|---|---|---|---|
Code Name | WAPs | Test Samples | Bathroom | Kitchen | Dining Room | Office | Bedroom | Living Room |
User1 | 34 | 17,410 | 480 (2.76%) | 995 (5.76%) | 1261 (7.23%) | 1214 (6.93%) | 6570 (37.72%) | 6890 (39.57%) |
User2 | 74 | 17,953 | 325 (1.81%) | 907 (5.05%) | 1493 (8.32%) | 7709 (42.94%) | 7519 (41.88%) | - |
User3 | 88 | 17,022 | - | 360 (2.11%) | 1035 (6.08%) | 14202 (83.43%) | 1425 (8.37%) | - |
User1_Centre | User1_Walking | User1_Common | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HMM | KNN | RF | NB | MLP | HMM | KNN | RF | NB | MLP | HMM | KNN | RF | NB | MLP | |
min. (%) | 43.09 | 53.77 | 70.20 | 45.51 | 57.50 | 42.61 | 58.24 | 64.01 | 61.05 | 54.14 | 35.60 | 52.03 | 73.46 | 47.37 | 66.39 |
sample size | 20 | 2 | 1 | 2 | 1 | 19 | 2 | 1 | 1 | 1 | 20 | 2 | 1 | 5 | 1 |
max. (%) | 55.28 | 64.29 | 77.88 | 51.61 | 64.98 | 50.74 | 67.63 | 70.62 | 67.42 | 57.50 | 44.81 | 64.62 | 82.15 | 53.06 | 76.01 |
sample size | 12 | 19 | 19 | 20 | 20 | 1 | 14 | 20 | 17 | 19 | 11 | 19 | 19 | 18 | 19 |
avg. (%) | 51.74 | 61.02 | 75.61 | 48.76 | 62.13 | 45.76 | 64.36 | 68.07 | 65.01 | 56.01 | 42.14 | 59.33 | 79.16 | 50.82 | 72.76 |
diff. (%) | 23.87 | 14.59 | 0.00 | 26.85 | 13.49 | 22.31 | 3.71 | 0.00 | 3.06 | 12.05 | 37.03 | 19.84 | 0.00 | 28.34 | 6.41 |
#best | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 20 | 0 | 0 |
User2_Centre | User2_Walking | User2_Common | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HMM | KNN | RF | NB | MLP | HMM | KNN | RF | NB | MLP | HMM | KNN | RF | NB | MLP | |
min. (%) | 42.93 | 69.90 | 75.04 | 68.81 | 73.45 | 48.04 | 71.58 | 77.11 | 68.95 | 75.73 | 42.21 | 77.33 | 82.70 | 78.54 | 73.19 |
sample size | 13 | 2 | 1 | 1 | 1 | 20 | 2 | 1 | 1 | 1 | 18 | 2 | 1 | 1 | 1 |
max. (%) | 49.90 | 78.81 | 80.20 | 75.27 | 80.04 | 57.44 | 80.65 | 87.60 | 78.39 | 81.31 | 55.29 | 88.38 | 90.02 | 86.48 | 81.01 |
sample size | 1 | 15 | 18 | 19 | 19 | 1 | 17 | 20 | 18 | 18 | 1 | 20 | 19 | 20 | 20 |
avg. (%) | 45.11 | 75.85 | 78.26 | 72.82 | 77.91 | 51.02 | 77.36 | 84.02 | 74.76 | 79.36 | 44.97 | 83.55 | 87.44 | 83.14 | 78.06 |
diff. (%) | 33.29 | 2.55 | 0.14 | 5.58 | 0.49 | 32.99 | 6.66 | 0.00 | 9.25 | 4.65 | 42.47 | 3.89 | 0.00 | 4.30 | 9.38 |
#best | 0 | 0 | 12 | 0 | 8 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 20 | 0 | 0 |
User3_Centre | User3_Walking | User3_Common | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HMM | KNN | RF | NB | MLP | HMM | KNN | RF | NB | MLP | HMM | KNN | RF | NB | MLP | |
min. (%) | 71.19 | 14.77 | 63.28 | 58.98 | 24.50 | 41.80 | 35.93 | 77.71 | 51.70 | 58.20 | 66.18 | 47.24 | 71.09 | 62.64 | 59.67 |
sample size | 1 | 19 | 1 | 1 | 19 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 |
max. (%) | 84.79 | 21.00 | 74.59 | 63.56 | 26.67 | 83.18 | 48.10 | 85.57 | 59.28 | 65.43 | 87.83 | 64.26 | 79.31 | 72.37 | 68.47 |
sample size | 19 | 5 | 20 | 4 | 1 | 20 | 19 | 19 | 19 | 15 | 15 | 17 | 19 | 17 | 20 |
avg. (%) | 79.79 | 17.29 | 71.56 | 61.90 | 25.64 | 58.76 | 45.05 | 83.30 | 56.54 | 62.82 | 80.01 | 59.64 | 77.16 | 69.11 | 65.32 |
diff. (%) | 0.00 | 62.50 | 8.23 | 17.88 | 54.15 | 24.54 | 38.25 | 0.00 | 26.76 | 20.48 | 1.05 | 21.42 | 3.90 | 11.95 | 15.74 |
#best | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 12 | 0 | 8 | 0 | 0 |
User1_All | User2_All | User3_All | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HMM | KNN | RF | NB | MLP | HMM | KNN | RF | NB | MLP | HMM | KNN | RF | NB | MLP | |
min. (%) | 75.20 | 69.52 | 76.14 | 46.69 | 74.13 | 72.86 | 83.79 | 86.71 | 70.57 | 80.08 | 66.18 | 47.24 | 71.09 | 62.64 | 59.67 |
sample size | 1 | 2 | 1 | 2 | 1 | 18 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 |
max. (%) | 82.12 | 82.49 | 82.60 | 52.03 | 82.58 | 75.30 | 93.41 | 92.46 | 78.77 | 88.16 | 87.83 | 64.26 | 79.31 | 72.37 | 68.47 |
sample size | 14 | 20 | 20 | 19 | 19 | 7 | 20 | 19 | 20 | 20 | 15 | 17 | 19 | 17 | 20 |
avg. (%) | 79.30 | 77.76 | 80.66 | 49.82 | 79.81 | 74.47 | 89.88 | 90.38 | 75.39 | 85.11 | 80.01 | 59.64 | 77.16 | 69.11 | 65.32 |
diff. (%) | 1.49 | 3.03 | 0.13 | 30.97 | 0.98 | 16.16 | 0.75 | 0.25 | 15.24 | 5.52 | 1.05 | 21.42 | 3.90 | 11.95 | 15.74 |
best | 5 | 0 | 14 | 0 | 1 | 0 | 10 | 10 | 0 | 0 | 12 | 0 | 8 | 0 | 0 |
Method | z-Value | Significance |
---|---|---|
KNN | 0.0 | NS |
RF | −4.174 | p < 0.01 |
NV | 0.149 | NS |
MLP | −1.192 | NS |
HMM | KNN | RF | NB | MLP |
---|---|---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belmonte-Fernández, Ó.; Sansano-Sansano, E.; Caballer-Miedes, A.; Montoliu, R.; García-Vidal, R.; Gascó-Compte, A. A Generative Method for Indoor Localization Using Wi-Fi Fingerprinting. Sensors 2021, 21, 2392. https://doi.org/10.3390/s21072392
Belmonte-Fernández Ó, Sansano-Sansano E, Caballer-Miedes A, Montoliu R, García-Vidal R, Gascó-Compte A. A Generative Method for Indoor Localization Using Wi-Fi Fingerprinting. Sensors. 2021; 21(7):2392. https://doi.org/10.3390/s21072392
Chicago/Turabian StyleBelmonte-Fernández, Óscar, Emilio Sansano-Sansano, Antonio Caballer-Miedes, Raúl Montoliu, Rubén García-Vidal, and Arturo Gascó-Compte. 2021. "A Generative Method for Indoor Localization Using Wi-Fi Fingerprinting" Sensors 21, no. 7: 2392. https://doi.org/10.3390/s21072392
APA StyleBelmonte-Fernández, Ó., Sansano-Sansano, E., Caballer-Miedes, A., Montoliu, R., García-Vidal, R., & Gascó-Compte, A. (2021). A Generative Method for Indoor Localization Using Wi-Fi Fingerprinting. Sensors, 21(7), 2392. https://doi.org/10.3390/s21072392