A Study on Real Time IGBT Junction Temperature Estimation Using the NTC and Calculation of Power Losses in the Automotive Inverter System
Abstract
:1. Introduction
2. Calculation Power Losses of IGBT Modules
2.1. Optimizing the Operating Parameters of IGBT
2.2. Optimizing the Operating Parameters of Diode
2.3. The Simulation Result of IGBT Power Loss Calculation
3. Design of the Simplified Thermal Impedance Model Using NTC
3.1. The Thermal Impedance Model between Junction and NTC
3.2. The Simulation Result of Junction Temperature Estimation
4. Experimental Verification of the Junction Temperature Estimation Algorithm
4.1. Experimental Setup
4.2. Experimental Results
4.2.1. The Results of the Experiment at the Stall Condition
4.2.2. The Results of the Experiment at the Driving Condition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Symbols
the thermal capacitance | |
the thermal capacitance between junction and NTC | |
the energy of turn-on losses per switching cycle | |
the energy of turn-off losses per switching cycle | |
the energy of reverse-recovery losses per switching cycle | |
the frequency of electric angle | |
the switching frequency | |
the command of d-axis current | |
the collector current | |
the forward current | |
the command of q-axis current | |
the conduction losses of the diode | |
the conduction losses of the IGBT | |
the power losses of the diode | |
the power losses of the IGBT | |
the switching losses of the diode | |
the switching losses of the IGBT | |
the total power losses of the IGBT module | |
the total power losses of the diode | |
the total power losses of the IGBT | |
the thermal resistance | |
the thermal resistance between junction and NTC | |
the temperature of estimation | |
the temperature of junction | |
the temperature of measurement by IR camera | |
the temperature of NTC | |
the torque reference | |
the collector-emitter saturation voltage | |
the DC-link voltage | |
the voltage command of d-axis current controller | |
the forward voltage | |
the voltage command of q-axis current controller | |
the thermal impedance between junction and NTC | |
Indices | |
c | collector |
cond | conduction |
de | d-axis of synchronously rotating reference frame |
e | electric angle |
est | estimation |
f | forward bias |
fdb | feedback |
Inv | inverter |
j | junction |
jN | junction to NTC |
nom | nominal |
qe | q-axis of synchronously rotating reference frame |
rec | reverse-recovery |
ref | reference |
Rg | gate resistor |
sat | saturation |
sw | switching |
th | thermal |
Vge | gate-emitter voltage |
References
- Infineon Technologies. Using the NTC inside a Power Electronic Module; Application Note AN2009-10; Infineon Technologies: Neubiberg, Germany, 2009. [Google Scholar]
- Hu, Z.; Ge, X.; Xie, D.; Zhang, Y.; Yao, B.; Dai, J.; Yang, F. An Aging-Degree Evaluation Method for IGBT Bond Wire with Online Multivariate Monitoring. Energies 2019, 12, 3962. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Wang, H.; Ma, K.; Chimire, P.; Iannuzzo, F.; Blaabjerg, F. A temperature-dependent thermal model of IGBT modules suitable for circuit-level simulations. In Proceedings of the IEEE Energy Conversion Congress and Exposition, Pittsburgh, PA, USA, 14–18 September 2014. [Google Scholar]
- Martin, S.; Ma, X. Correlating NTC-Reading and Chip-Temperature in Power Electronic Modules. In Proceedings of the PCIM Europe 2015, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 19–21 May 2015. [Google Scholar]
- Seiichiro, I.; Mikio, I. J-Series IPM and T-PM for EV and HEV Applications; TECHNICAL REPORTS; Mitsubishi Electric ADVANCE: Tokyo, Japan, March 2015. [Google Scholar]
- Kim, Y.S.; Sul, S.K. On-Line Estimation of IGBT Junction Temperature Using On-State Voltage Drop. In Proceedings of the Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting, St. Louis, MO, USA, 12–15 October 1998; pp. 441–444. [Google Scholar]
- Mantooth, H.A.; Hefner, A.R., Jr. Electro-thermal simulation of an IGBT PWM inverter. IEEE Trans. Power Electron. 1997, 12, 474–484. [Google Scholar] [CrossRef]
- Ishiko, M.; Kondo, T.; Usui, M.; Tadano, H. A compact calculation method for dynamic electro-thermal behavior of IGBTs in PWM inverters. In Proceedings of the 2007 Power Conversion Conference-Nagoya, Nagoya, Japan, 2–5 April 2007; pp. 1043–1048. [Google Scholar]
- Du, B.; Hudgins, J.L.; Santi, E.; Bryant, A.T.; Palmer, P.R.; Mantooth, H.A. Transient electrothermal simulation of power semiconductor devices. IEEE Trans. Power Electron. 2010, 25, 237–248. [Google Scholar]
- Lakhsasi, A.; Hamri, Y.; Skorek, A. Partially coupled electro-thermal analysis for accurate prediction of switching devices. Proc. Can. Conf. Electr. Comput. Eng. 2001, 1, 375–380. [Google Scholar]
- Riccio, M.; Irace, A.; Breglio, G.; Spirito, P.; Napoli, E.; Mizuno, Y. Electro-thermal instability in multi-cellular trench-IGBTs in avalanche condition: Experiments and simulations. In Proceedings of the 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), San Diego, CA, USA, 23–26 May 2011; pp. 124–127. [Google Scholar]
- Greco, G.; Vinci, G.; Bazzano, G.; Raciti, A.; Cristaldi, D. Layered electro-thermal model of high-end integrated power electronics modules with IGBTs. In Proceedings of the IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society (IECON), Dallas, TX, USA, 29 October–1 November 2014; pp. 1575–1580. [Google Scholar]
- Hefner, R.; Blackburn, D.L. Simulating the dynamic electrothermal behavior of power electronic circuits and systems. IEEE Trans. Power Electron. 1993, 8, 376–385. [Google Scholar] [CrossRef]
- Yun, C.S.; Malberti, P.; Ciappa, M.; Fichtner, W. Thermal component model for electrothermal analysis of IGBT module systems. IEEE Trans. Adv. Packag. 2001, 24, 401–406. [Google Scholar]
- Kojima, T.; Yamada, Y.; Nishibe, Y.; Torii, K. Novel RC compact thermal model of HV inverter module for electro-thermal coupling simulation. In Proceedings of the 2007 Power Conversion Conference-Nagoya (PCC), Nagoya, Japan, 2–5 April 2007; pp. 1025–1029. [Google Scholar]
- Castellazzi, A.; Ciappa, M.; Fichtner, W.; Batista, E.; Dienot, J.; Mermet-Guyennet, M. Electro-thermal model of a high-voltage IGBT module for realistic simulation of power converters. In Proceedings of the ESSDERC 2007-37th European Solid State Device Research Conference, Munich, Germany, 11–13 September 2007; pp. 155–158. [Google Scholar]
- Gragger, J.V.; Fenz, C.J.; Kernstock, H.; Kral, C. A fast inverter model for electro-thermal simulation. In Proceedings of the 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 5–9 February 2012; pp. 2548–2555. [Google Scholar]
- Batard, C.; Ginot, N.; Antonios, J. Lumped dynamic electrothermal model of IGBT module of inverters. IEEE Trans. Compon. Packag. Manuf. Technol. 2015, 5, 355–364. [Google Scholar] [CrossRef]
- Qian, C.; Fan, J.; Tang, H.; Sun, B.; Ye, H.; Zhang, G. Thermal management on IGBT power electronic devices and modules. IEEE Access 2018, 6, 12868–12884. [Google Scholar] [CrossRef]
- Infineon Technologies. Transient Thermal Measurements and Thermal Equivalent Circuit Models; Application Note AN2015-10; Infineon Technologies: Neubiberg, Germany, 1995. [Google Scholar]
- Arash, N.; Ashkan, N.; Osama, A.M. A Physics-Based, Dynamic Electro-Thermal Model of Silicon Carbide Power IGBT Devices. In Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2014; pp. 513–518. [Google Scholar]
- Infineon Technologies. Calculation of Major IGBT Operating Parameters; Application Note ANIP9931E; Infineon Technologies: Neubiberg, Germany, 1999. [Google Scholar]
Condition of Experiment | Results of Power Loss Calculation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Case | Coolant (°C) | fsw (kHz) | fe (Hz) | Measurement | Simulation | Error | ||||
Total | Total | IGBT | Diode | |||||||
1 | 65 | 4 | 0 | 550 | 66 | 1.62 | 1.626 | 1.14 | 0.486 | 0.38 |
2 | 65 | 8 | 0 | 550 | 30 | 1.64 | 1.628 | 1.18 | 0.448 | 0.73 |
3 | 65 | 4 | 0 | 680 | 58 | 1.53 | 1.539 | 1.098 | 0.441 | 0.59 |
4 | 65 | 4 | 0 | 810 | 50 | 1.729 | 1.747 | 1.261 | 0.486 | 1.04 |
5 | 25 | 4 | 0 | 550 | 100 | 2.43 | 2.439 | 1.718 | 0.721 | 0.37 |
Result | IGBT | Diode | ||
---|---|---|---|---|
(°C/kW) | (W/°C) | (°C/kW) | (W/°C) | |
Stall condition | 41.13 | 11.21 | 102.1 | 3.36 |
Driving condition | 54.76 | 13.56 | 155.59 | 5.16 |
Condition of Inverter Driving | Measurement vs. Simulation Result | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Case | Coolant (°C) | (kHz) | (Hz) | (V) | (%) | IGBT | Diode | ||||
(°C) | (°C) | Error (%) | (°C) | (°C) | Error (%) | ||||||
1 | 65 | 4 | 0 | 550 | 100 | 153.8 | 158.9 | 1.1 | 155.5 | 158.7 | 0.25 |
2 | 65 | 4 | 0 | 550 | 100 | 153 | 157.2 | 1.5 | 155.3 | 158.5 | 0.8 |
3 | 65 | 4 | 0 | 550 | 100 | 155.4 | 160.2 | 1.3 | 157.4 | 160.7 | 0.3 |
4 | 65 | 4 | 0 | 550 | 100 | 157 | 161.8 | 1.2 | 158.9 | 162.2 | 0.25 |
5 | 65 | 4 | 0 | 550 | 100 | 155 | 159.1 | 1.0 | 156.6 | 159.9 | 0.5 |
6 | 65 | 8 | 33.3 | 550 | 100 | 138.2 | 135.3 | 0.94 | 139.5 | 136.7 | 1.03 |
7 | 65 | 8 | 33.3 | 680 | 100 | 146.1 | 139.4 | 0.54 | 146.9 | 141 | 1.14 |
8 | 65 | 8 | 33.3 | 810 | 100 | 146.1 | 136.4 | 0.75 | 147.2 | 138.2 | 1.3 |
Condition of Experiment Case | Measurement vs. Estimation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Case | Coolant (°C) | (kHz) | (Hz) | (V) | (%) | IGBT | Diode | ||||
(°C) | (°C) | Error (%) | (°C) | (°C) | Error (%) | ||||||
1 | 65 | 4 | 0 | 550 | 100 | 153.7 | 152.3 | 0.91 | 157 | 156.7 | 0.19 |
2 | 65 | 4 | 0 | 680 | 80 | 144.9 | 146.3 | 0.97 | 145.5 | 145.6 | 0.07 |
3 | 65 | 4 | 0 | 710 | 80 | 149.5 | 150.1 | 0.4 | 149.2 | 148.4 | 0.54 |
4 | 65 | 4 | 0 | 810 | 60 | 134.2 | 137 | 2.0 | 132.9 | 132.3 | 0.45 |
5 | 65 | 4 | 0 | 550 | 100 | 154.4 | 153.6 | 0.52 | 158.1 | 157.9 | 0.13 |
6 | 65 | 4 | 0 | 550 | 100 | 154.5 | 152.4 | 1.36 | 157.9 | 156.8 | 0.7 |
Specifications | Value | |
---|---|---|
DC-link voltage | Minimum | 550 (V) |
Nominal | 710 (V) | |
Maximum | 810 (V) | |
Motor speed | Range | 0 to 12,000 (rpm) |
Torque | Maximum | 500 (Nm) |
Power | Maximum | 120 (kW) |
Phase current | Maximum | 636 (A) |
Switching frequency | 0 to 500 (rpm) | 4 (kHz) |
500 to 12,000 (rpm) | 8 (kHz) |
Condition of Experiment Case | Experiment vs. Estimation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Case | Coolant (°C) | (kHz) | (Hz) | (V) | (%) | IGBT | Diode | ||||
(°C) | (°C) | Error (%) | (°C) | (°C) | Error (%) | ||||||
1 | 65 | 8 | TN | 550 | 100 | 135.6 | 143 | 5.46 | 124.3 | 126.1 | 1.45 |
2 | 65 | 8 | TN | 680 | 80 | 134 | 138.5 | 3.36 | 124.6 | 125.6 | 0.8 |
3 | 65 | 8 | TN | 810 | 80 | 151.5 | 155.6 | 2.71 | 144.3 | 146. 6 | 1.59 |
4 | 65 | 8 | 33.3 | 550 | 80 | 109.9 | 113.2 | 3.0 | 109.2 | 109.5 | 0.27 |
5 | 65 | 8 | 33.3 | 680 | 80 | 122.9 | 124.9 | 1.63 | 114.6 | 118 | 2.97 |
6 | 65 | 8 | 20.0 | 710 | 80 | 95 | 94.9 | 0.72 | 95.8 | 97.9 | 2.19 |
7 | 65 | 8 | 33.3 | 710 | 80 | 126.7 | 127.5 | 0.63 | 117.5 | 119.4 | 1.62 |
8 | 65 | 8 | 33.3 | 710 | 80 | 144.2 | 147.4 | 0.84 | 130.9 | 133.4 | 3.16 |
9 | 65 | 8 | 33.3 | 810 | 80 | 139.5 | 138.5 | 2.22 | 126.5 | 126.5 | 1.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, H.; Hwang, J.; Kwon, S.; Baek, H.; Uhm, J.; Lee, G. A Study on Real Time IGBT Junction Temperature Estimation Using the NTC and Calculation of Power Losses in the Automotive Inverter System. Sensors 2021, 21, 2454. https://doi.org/10.3390/s21072454
Lim H, Hwang J, Kwon S, Baek H, Uhm J, Lee G. A Study on Real Time IGBT Junction Temperature Estimation Using the NTC and Calculation of Power Losses in the Automotive Inverter System. Sensors. 2021; 21(7):2454. https://doi.org/10.3390/s21072454
Chicago/Turabian StyleLim, Heesun, Jaeyeob Hwang, Soonho Kwon, Hyunjun Baek, Juneik Uhm, and GeunHo Lee. 2021. "A Study on Real Time IGBT Junction Temperature Estimation Using the NTC and Calculation of Power Losses in the Automotive Inverter System" Sensors 21, no. 7: 2454. https://doi.org/10.3390/s21072454
APA StyleLim, H., Hwang, J., Kwon, S., Baek, H., Uhm, J., & Lee, G. (2021). A Study on Real Time IGBT Junction Temperature Estimation Using the NTC and Calculation of Power Losses in the Automotive Inverter System. Sensors, 21(7), 2454. https://doi.org/10.3390/s21072454