A Proposal of a Troposphere Model in a GNSS Simulator for VANET Applications
Abstract
:1. Introduction
2. Related Work
2.1. GNSS Simulators
2.2. GNSS in VANET
2.3. Main Paper Contributions
- The introduction of a troposphere model in the GPS-SDR-SIM, an open-source simulator, in order to add the delay of the transmitted signal taking into account the troposphere.
- Co-simulation proposal where simulation modeling is integrated with real equipment and real data elaborated by GPS receivers. The proposed approach can be applied by researchers or industry to simulate positioning errors on realistic path working in the lab. and reducing performance evaluation costs.
- The goodness of the modeling proposal is proved by a set of simulation tests carried out at three different latitudes. It has been evaluated in terms of longitude and altitude errors.
3. Introduction to GNSS
3.1. Why Use GNSS Simulator
- Field tests using real-time signals.
- Registration test.
- Reproduction and laboratory simulation.
- Complete control over the signals from the constellations.
- Complete control over environmental conditions.
- Repeatability.
- No unwanted interference.
- No unwanted signal effects.
- Ability to easily test scenarios with GNSS constellation errors.
- Ability to test in the laboratory without involving vehicles.
- Ability to test constellations not yet present.
3.2. Pseudorange
4. GNSS Application in VANET
GPS-SDR-SIM: An Open Source Simulator for GPS Receivers
5. Tropospheric Model Solution
5.1. Tropospheric Collins Model
- Atmospheric pressure [P (mbar)].
- Temperature [T (K)].
- Water vapor pressure [e (mbar)].
- Lapse rate temperature [ (K/m)].
- Lapse rate of water vapor [ (adimensional)]
5.2. Model Implementation
Algorithm 1: troposphericDelay: Calculate the delay of the signal in meters due to the troposphere ( T(E) ). |
Input : gpstime_t (output of gpsTimeToDays function, llh (latitude, longitude, altitude), azel (azimuth and elevation of satellite) Output: T(E) 1 Tz0dry; 2 Tz0wet; 3 ; 4 ; 4 T(E) = (Tzdry + Tzwet) * Me; 5 return T(E); |
- gpsTimeToDays: it has the aim of simply converting the GPS time from the week-seconds format, to the day of the year ranging from 1 to 365, the pseudocode of this method can be seen in Algorithm 2.
- parametroTropos: it has the aim of taking the listed values and, on the basis of the involved parameter such as latitude, satellite elevation and day of the year, it calculates the correct value, which will then be used in the main method, see Algorithm 3.
Algorithm 2: gpsTimeToDays: Converts from gpstime_t to the number of days from January. |
Input : gpstime_t g Output: days from Jenuary 1 weeknumber; 2 seconds; 3 days = weeknumber * 7; 4 ; 5 return daysFromJenuary; |
Algorithm 3: parameterTropos: Calculate the parameter as function of and D. |
Input : Average Environmental Value (AEV): (P, T, e, b, l) which represent the coefficients relating to the environmental parameters tabulated in the Collins tropospheric model, based on the “latitude” () of the receiver and the “day of the year” (D) Output: 1 ; 2 ; ; 3 ; 4 return ; |
6. Performance Evaluation
6.1. Simulation Environment
6.2. Experimental Results
7. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AEV | Average Environmental Value |
COTS | Commercial-Off-The-Shelf |
EGNOS | European Geostationary Navigation Overlay Service |
GGA | Global Positioning System Fixed Data |
GLL | Geographic Position—Latitude/Longitude |
GLONASS | Global’naya Navigatsionnaya Sputnikovaya Sistema |
GNSS | Global Navigation Satellite System |
GPS | Global Positioning System |
GSA | GNSS DOP and Active Satellites |
GSV | GNSS satellites in view |
KML | Keyhole Markup Language |
ITS | Intelligent Transportation System |
NMEA | National Marine Electronics Association |
RINEX | Receiver Independent Exchange |
RMC | Recommended Minimum Specific GNSS Data |
SBAS | Satellite-Based Augmentation System |
SDR | Software Defined Radio |
VANET | Vehicular Ad-Hoc Network |
VTG | Course Over Ground and Ground Speed |
WAAS | Wide Area Augmentation System |
References
- Lu, D.; Schnieder, E. Performance evaluation of GNSS for train localization. IEEE Trans. Intell. Transp. Syst. 2014, 16, 1054–1059. [Google Scholar] [CrossRef]
- Tsui, J.B.Y. Fundamentals of Global Positioning System Receivers: A Software Approach; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 173. [Google Scholar]
- Zhang, S.; Ji, Z. A parallel GPS satellite positioning algorithm based on broadcast ephemeris. In Proceedings of the 2015 8th International Congress on Image and Signal Processing (CISP); IEEE: New York, NY, USA, 2015; pp. 7–11. [Google Scholar]
- Groves, P.D. Principles of GNSS, inertial, and multisensor integrated navigation systems. IEEE Aerosp. Electron. Syst. Mag. 2015, 30, 26–27. [Google Scholar] [CrossRef]
- Ghori, M.R.; Zamli, K.Z.; Quosthoni, N.; Hisyam, M.; Montaser, M. Vehicular ad-hoc network (VANET): Review. In Proceedings of the 2018 IEEE Intern. Conf. on Innovative Research and Development (ICIRD); IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Zhu, N.; Marais, J.; Bétaille, D.; Berbineau, M. GNSS position integrity in urban environments: A review of literature. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2762–2778. [Google Scholar] [CrossRef] [Green Version]
- Hasan, K.F.; Feng, Y.; Tian, Y.C. GNSS time synchronization in vehicular ad-hoc networks: Benefits and feasibility. IEEE Trans. Intell. Transp. Syst. 2018, 19, 3915–3924. [Google Scholar] [CrossRef] [Green Version]
- Santamaria, A.F.; Fazio, P.; Raimondo, P.; Tropea, M.; De Rango, F. A New Distributed Predictive Congestion Aware Re-Routing Algorithm for CO2 Emissions Reduction. IEEE Trans. Veh. Technol. 2019, 68, 4419–4433. [Google Scholar] [CrossRef]
- Fazio, P.; Tropea, M.; Marano, S. Node Re-Routing and Congestion Reduction Scheme for Wireless Vehicular Networks. Wirel. Pers. Commun. 2017, 96, 5203–5219. [Google Scholar] [CrossRef]
- Santamaria, A.F.; Tropea, M.; Fazio, P.; De Rango, F. Managing emergency situations in VANET through heterogeneous technologies cooperation. Sensors 2018, 18, 1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazio, P.; Sottile, C.; Santamaria, A.F.; Tropea, M. Vehicular networking enhancement and multi-channel routing optimization, based on multi-objective metric and minimum spanning tree. Adv. Electr. Electron. Eng. 2013, 11, 349–356. [Google Scholar] [CrossRef]
- Frnda, J.; Voznak, M.; Rozhon, J.; Mehic, M. Prediction model of QoS for Triple play services. In 2013 21st Telecommunications Forum Telfor (TELFOR); IEEE: New York, NY, USA, 2013; pp. 733–736. [Google Scholar]
- Fazio, P.; Tropea, M.; Sottile, C.; Marano, S.; Voznak, M.; Strangis, F. Mobility prediction in wireless cellular networks for the optimization of call admission control schemes. In 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE); IEEE: Toronto, ON, Canada, 2014; pp. 1–5. [Google Scholar]
- Collins, J.P. Assessment and Development of a Tropospheric Delay Model for Aircraft Users of the Global Positioning System. Ph.D. Thesis, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton, NB, Canada, 1999. [Google Scholar]
- Deng, C.; Wang, D.D. Study and simulation of digital IF GPS signals. In Proceedings of the 2011 International Conference on Machine Learning and Cybernetics; IEEE: New York, NY, USA, 2011; Volume 2, pp. 544–547. [Google Scholar]
- Paakki, T.; Raasakka, J.; Della Rosa, F.; Hurskainen, H.; Nurmi, J. TUTGNSS University based hardware/software GNSS receiver for research purposes. In Proceedings of the 2010 Ubiquitous Positioning Indoor Navigation and Location Based Service; IEEE: New York, NY, USA, 2010; pp. 1–6. [Google Scholar]
- Fernandez-Prades, C.; Arribas, J.; Closas, P.; Aviles, C.; Esteve, L. GNSS-SDR: An open source tool for researchers and developers. In Proceedings of the 24th Intern. Technical Meeting of The Sat. Division of the Institute of Navigation (ION GNSS 2011), Portland, OR, USA, 20–23 September 2011; pp. 780–794. [Google Scholar]
- Fernández-Prades, C.; Arribas, J.; Esteve, L.; Pubill, D.; Closas, P. An open source Galileo E1 software receiver. In Proceedings of the 2012 6th ESA Workshop on Satellite Navigation Technologies (Navitec 2012) & European Workshop on GNSS Signals and Signal Processing; IEEE: New York, NY, USA, 2012; pp. 1–8. [Google Scholar]
- Kelley, C.; Barnes, J.; Cheng, J. OpenSource GPS Open Source Software for Learning about GPS. In Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005), Long Beach, CA, USA, 13–16 September 2005; pp. 2524–2533. [Google Scholar]
- Mahmoud, A.; Noureldin, A.; Hassanein, H.S. VANETs positioning in urban environments: A novel cooperative approach. In Proceedings of the 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall); IEEE: New York, NY, USA, 2015; pp. 1–7. [Google Scholar]
- Peker, A.U.; Acarman, T.; Yaman, Ç.; Yüksel, E. Vehicle localization enhancement with VANETs. In Proceedings of the 2014 IEEE Intelligent Vehicles Symposium Proceedings; IEEE: New York, NY, USA, 2014; pp. 661–666. [Google Scholar]
- Margaria, D.; Falletti, E. A novel local integrity concept for GNSS receivers in urban vehicular contexts. In Proceedings of the 2014 IEEE/ION Position, Location and Navigation Symposium-PLANS 2014; IEEE: New York, NY, USA, 2014; pp. 413–425. [Google Scholar]
- Alam, N.; Balaei, A.T.; Dempster, A.G. Relative positioning enhancement in VANETs: A tight integration approach. IEEE Trans. Intell. Transp. Syst. 2012, 14, 47–55. [Google Scholar] [CrossRef]
- Paakki, T.; Nurmi, J. Faster than real-time GNSS receiver testing. In Proceedings of the International Conference on Localization and GNSS 2014 (ICL-GNSS 2014); IEEE: New York, NY, USA, 2014; pp. 1–4. [Google Scholar]
- Hu, Y. GNSS SDR Signal Generator Implementation Based on USRP N210. J. Phys. Conf. Ser. 2019, 1314, 012016. [Google Scholar] [CrossRef]
- ADALM-PLUTO—Active Learning Module (PlutoSDR)—Overview. 2019. Available online: https://wiki.analog.com/university/tools/pluto (accessed on 10 December 2019).
- HackRF, Open Source Hardware for Software-Defined Radio. 2019. Available online: https://greatscottgadgets.com/hackrf/ (accessed on 10 December 2019).
- Ephemeris Data Information. 2019. Available online: ftp://cddis.gsfc.nasa.gov/gnss/data/daily/ (accessed on 10 December 2019).
- Gurtner, W.; Estey, U. RINEX: The Receiver Independent Exchange Format Version 2.11; Astronomical Institute: Bern, Switzerland, 2013. [Google Scholar]
- Rao, M.; Falco, G. How can pseudorange measurements be generated from code tracking. Inside Gnss Mag. 2012, 7, 26–33. [Google Scholar]
- SatGen Software. 2019. Available online: https://www.labsat.co.uk/index.php/en/products/satgen-simulator-software (accessed on 10 December 2019).
- Li, T.; Zhang, H.; Gao, Z.; Chen, Q.; Niu, X. High-accuracy positioning in urban environments using single-frequency multi-GNSS RTK/MEMS-IMU integration. Remote Sens. 2018, 10, 205. [Google Scholar] [CrossRef] [Green Version]
- Pignieri, F.; De Rango, F.; Veltri, F.; Marano, S. Markovian approach to model underwater acoustic channel: Techniques comparison. In Proceedings of the MILCOM 2008 IEEE Military Communications Conference, San Diego, CA, USA, 16–19 November 2008; pp. 1–7. [Google Scholar]
GPS | GLONASS | Galileo | CNSS | |
---|---|---|---|---|
Country | USA | Russia | Europe | China |
Number of Satellite | 32 | 24 | 30 | 35 |
Number of orbital planes | 6 | 3 | 3 | 10 |
Orbital height (km) | 20.200 | 19.140 | 23.222 | 21.150 |
Orbital period | 11 h 58 m | 11 h 15 m | 14 h 06 m | 12 h 48 m |
Orbital Inclination | 55 | 64.8 | 56 | 55.5 |
Coding | CDMA | FDMA | CDMA | CDMA |
Carrier Frequencies (MHz) | 1575 | 1559–1592 | 1579 | 1590 |
1228 | 1243–2063 | 1279 | 1561 | |
1176 | 1207 | 1269 | ||
1192 | 1207 | |||
1176 | 1192 |
Value | Description |
---|---|
GPGGA | GP: GPS-GGA: type of message |
Time format | hhmmss.ss (h: hours, m: minutes, s: seconds |
090000.00 | 09 (h): 00 (m): 00.00 (s) |
3921.28520559,N | North (latitude) |
01613.51936448,E | East (longitude) |
1 | GPS Quality indicator |
0 = Invalid | |
1 = GPS fix | |
2 = DGPS fix | |
3 = Fix GPS PPS | |
4 = RTK (Real Time Kinematic) entire | |
5 = RTK float | |
6 = Navigazione Stimata (dead reckoning) | |
7 = Input Manual | |
8 = Simulation | |
05 | number of satellites |
2.87 | Horizontal Dilution of Precision (HDOP) |
(This is a unitless number indicating how accurate the horizontal position is. Lower is better). | |
160.0,M | Altitude (meters above mean-sea-level) |
−21.3213,M | Geoidal Separation, meteres: the difference between the earth ellipsoid surface and mean-sea-level (geoid) surface, “-” = mean-sea-level surface below WGS-84 ellipsoid surface (* World Geodetic System 1984) |
Average | |||||
Latitude(°) | (mbar) | (K) | (mbar) | (K/m) | |
15 | 1013.25 | 299.65 | 26.31 | 6.30 | 2.77 |
30 | 1017.25 | 294.15 | 21.79 | 6.05 | 3.15 |
45 | 1015.75 | 283.15 | 11.66 | 5.58 | 2.57 |
60 | 1011.75 | 272.15 | 6.78 | 5.39 | 1.81 |
75 | 1013.00 | 263.65 | 4.11. | 4.53 | 1.55 |
Seasonal variation | |||||
Latitude () | (mbar) | (K) | (mbar) | (K/m) | |
15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
30 | 7.00 | 8.85 | 0.25 | 0.33 | |
45 | 11.00 | 7.24 | 0.32 | 0.46 | |
60 | 15.00 | 5.36 | 0.81 | 0.74 | |
75 | 14.50 | 3.39 | 0.62 | 0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tropea, M.; Arieta, A.; De Rango, F.; Pupo, F. A Proposal of a Troposphere Model in a GNSS Simulator for VANET Applications. Sensors 2021, 21, 2491. https://doi.org/10.3390/s21072491
Tropea M, Arieta A, De Rango F, Pupo F. A Proposal of a Troposphere Model in a GNSS Simulator for VANET Applications. Sensors. 2021; 21(7):2491. https://doi.org/10.3390/s21072491
Chicago/Turabian StyleTropea, Mauro, Angelo Arieta, Floriano De Rango, and Francesco Pupo. 2021. "A Proposal of a Troposphere Model in a GNSS Simulator for VANET Applications" Sensors 21, no. 7: 2491. https://doi.org/10.3390/s21072491
APA StyleTropea, M., Arieta, A., De Rango, F., & Pupo, F. (2021). A Proposal of a Troposphere Model in a GNSS Simulator for VANET Applications. Sensors, 21(7), 2491. https://doi.org/10.3390/s21072491