Optimization of Imminent Labor Prediction Systems in Women with Threatened Preterm Labor Based on Electrohysterography
Abstract
:1. Introduction
2. Materials and Methods
2.1. EHG Database and Characterization
2.2. Classifiers Design and Assessment
3. Results
3.1. Random Forest (RF)
3.2. Extreme Learning Machine (ELM)
3.3. K-Nearest Neighbors (KNN)
3.4. Comparison of Classifiers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
RF Hyperparameters | ELM Hyperparameters | KNN Hyperparameters |
---|---|---|
Number of trees (100, 200, 500, and 750) | Number of neurons in the hidden layer (100, 500, 750, 1000, 2000, and 30,000); | Number of neighbors (1, 3, 5, and 7) |
Maximum depth of these trees (6, 10, and unlimited) | Activation function (hyperbolic tangent and sigmoid). | Kernel used for weighting the distances (triangular, Biweight and Epanechnikov). |
Cost of division based on the criterion of gain of information were optimized (0.001, 0.2, and 0.5) |
Opt. Criterion | Inputs | Classifier | Number of Neurons | Activation Function |
---|---|---|---|---|
F1-score | EHGP10–P90 + Obs | ELMF1_1 | 500 | Sigmoid |
EHGP50 + Obs | ELMF1_2 | 500 | Sigmoid | |
EHGP10–P90 | ELMF1_3 | 500 | Sigmoid | |
EHGP50 | ELMF1_4 | 500 | Sigmoid | |
Sensitivity | EHGP10–P90 + Obs | ELMSEN_1 | 750 | Sigmoid |
EHGP50 + Obs | ELMSEN_2 | 1000 | Sigmoid | |
EHGP10–P90 | ELMSEN_3 | 750 | Sigmoid | |
EHGP50 | ELMSEN_4 | 500 | Sigmoid |
Opt. Criterion | Inputs | Classifier | Number of Neurons | Activation Function |
---|---|---|---|---|
F1-score | EHGP10–P90 + Obs | ELMF1_1 | 500 | Sigmoid |
EHGP50 + Obs | ELMF1_2 | 500 | Sigmoid | |
EHGP10–P90 | ELMF1_3 | 500 | Sigmoid | |
EHGP50 | ELMF1_4 | 500 | Sigmoid | |
Sensitivity | EHGP10–P90 + Obs | ELMSEN_1 | 750 | Sigmoid |
EHGP50 + Obs | ELMSEN_2 | 1000 | Sigmoid | |
EHGP10–P90 | ELMSEN_3 | 750 | Sigmoid | |
EHGP50 | ELMSEN_4 | 500 | Sigmoid |
Opt. Criterion | Inputs | Classifier | Number of Neighbors | Kernel |
---|---|---|---|---|
F1-score | EHGP10–P90 + Obs | KNNF1_1 | 2 | Triangular |
EHGP50 + Obs | KNNF1_2 | 7 | Biweight | |
EHGP10–P90 | KNNF1_3 | 2 | Triangular | |
EHGP50 | KNNF1_4 | 7 | Biweight | |
Sensitivity | EHGP10–P90 + Obs | KNNSEN_1 | 7 | Triangular |
EHGP50 + Obs | KNNSEN_2 | 7 | Epanechnikov | |
EHGP10–P90 | KNNSEN_3 | 5 | Triangular | |
EHGP50 | KNNSEN_4 | 7 | Triangular |
References
- Behrman, R.E.; Butler, A.S. Preterm Birth: Causes, Consequences, and Prevention. Preterm Birth: Causes, Consequences, and Prevention; National Academies Press: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
- Levels and Trends in Child Mortality Report 2019. United Nations Children’s Fund; UN Inter-agency group for child mortality estimation.United Nations Children’s. Available online: https://www.unicef.org/media/79371/file/UN-IGME-child-mortality-report-2020.pdf.pdf (accessed on 1 April 2021).
- Howson, C.P.; Kinney, M.V.; McDougall, L.; Lawn, J.E.; Born Too Soon Preterm Birth Action Group. Born too soon: Preterm birth matters. Reprod. Health 2013, 10 (Suppl. 1), S1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godeluck, A.; Godeluck, A.; Gérardin, P.; Lenclume, V.; Mussard, C.; Robillard, P.Y.; Sampériz, S.; Benhammou, V.; Truffert, P.; Ancel, P.Y.; et al. Mortality and severe morbidity of very preterm infants: Comparison of two French cohort studies. BMC Pediatr. 2019, 19, 360. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.; Brown, J.; Medley, N.; Dalziel, S.R. Antenatal Corticosteroids for Accelerating Fetal Lung Maturation for Women at Risk of Preterm Birth. Cochrane Database of Systematic Reviews; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2017; Volume 2017. [Google Scholar] [CrossRef]
- Garfield, R.E.; Maner, W.L. Physiology and electrical activity of uterine contractions. Semin. Dev. Biol. 2007, 18, 289–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- E Esplin, M.S.; Elovitz, M.A.; Iams, J.D.; Parker, C.B.; Wapner, R.J.; Grobman, W.A.; Simhan, H.N.; Wing, D.A.; Haas, D.M.; Silver, R.M.; et al. Predictive accuracy of serial transvaginal cervical lengths and quantitative vaginal fetal fibronectin levels for spontaneous preterm birth among nulliparous women. JAMA J. Am. Med. Assoc. 2017, 317, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Berghella, V.; Hayes, E.; Visintine, J.; Baxter, J.K. Fetal Fibronectin Testing for Reducing the Risk of Preterm Birth. Cochrane Database of Systematic Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Lucovnik, M.; Chambliss, L.R.; Garfield, R.E. Costs of unnecessary admissions and treatments for ‘threatened preterm labor’. Am. J. Obstet. Gynecol. 2013, 209, 217.e1–217.e3. [Google Scholar] [CrossRef]
- Grover, C.M.; Posner, S.; Kupperman, M.; Washington, E.A. Term delivery after hospitalization for preterm labor: Incidence and costs in california. Prim. Care Update Ob Gyns 1998, 5, 178. [Google Scholar] [CrossRef]
- Most, O.; Langer, O.; Kerner, R.; Ben David, G.; Calderon, I. Can myometrial electrical activity identify patients in preterm labor? Am. J. Obstet. Gynecol. 2008, 199, 378. [Google Scholar] [CrossRef]
- Maner, W.L.; Garfield, R.E. Identification of human term and preterm labor using artificial neural networks on uterine electromyography data. Ann. Biomed. Eng. 2007, 35, 465–473. [Google Scholar] [CrossRef]
- Devedeux, D.; Marque, C.; Mansour, S.; Germain, G.; Duchêne, J. Uterine electromyography: A critical review. Am. J. Obstet. Gynecol. 1993, 169, 1636–1653. [Google Scholar] [CrossRef]
- Chkeir, A.; Fleury, M.J.; Karlsson, B.; Hassan, M.; Marque, C. Patterns of electrical activity synchronization in the pregnant rat uterus. BioMedicine 2013, 3, 140–144. [Google Scholar] [CrossRef]
- Mas-Cabo, J.; Ye-Lin, Y.; Garcia-Casado, J.; Alberola-Rubio, J.; Perales, A.; Prats-Boluda, G. Uterine contractile efficiency indexes for labor prediction: A bivariate approach from multichannel electrohysterographic records. Biomed. Signal Process. Control 2018, 46, 238–248. [Google Scholar] [CrossRef]
- Vinken, M.P.G.C.; Rabotti, C.; Mischi, M.; Oei, S.G. Accuracy of frequency-related parameters of the electrohysterogram for predicting preterm delivery: A review of the literature. Obs. Gynecol. Surv. 2009, 64, 529–541. [Google Scholar] [CrossRef]
- Horoba, K.; Jezewski, J.; Matonia, A.; Wrobel, J.; Czabanski, R.; Jezewski, M. Early predicting a risk of preterm labour by analysis of antepartum electrohysterographic signals. Biocybern. Biomed. Eng. 2016, 36, 574–583. [Google Scholar] [CrossRef]
- Mischi, M.; Chen, C.; Ignatenko, T.; de Lau, H.; Ding, B.; Oei, S.G.G.; Rabotti, C. Dedicated Entropy Measures for Early Assessment of Pregnancy Progression From Single-Channel Electrohysterography. IEEE Trans. Biomed. Eng. 2018, 65, 875–884. [Google Scholar] [CrossRef]
- Fele-Zorz, G.; Kavsek, G.; Novak-Antolic, Z.; Jager, F.; Fele-Žorž, G.; Kavšek, G.; Novak-Antolič, Ž.; Jager, F.; Fele-Zorz, G.; Kavsek, G.; et al. A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Med. Biol. Eng. Comput. 2008, 46, 911–922. [Google Scholar] [CrossRef]
- Mas-Cabo, J.; Ye-Lin, Y.; Garcia-Casado, J.; Díaz-Martinez, A.; Perales-Marin, A.; Monfort-Ortiz, R.; Roca-Prats, A.; López-Corral, Á.; Prats-Boluda, G.; Diaz-Martinez, A.; et al. Robust Characterization of the Uterine Myoelectrical Activity in Different Obstetric Scenarios. Entropy 2020, 22, 743. [Google Scholar] [CrossRef]
- Fergus, P.; Idowu, I.; Hussain, A.; Dobbins, C. Advanced artificial neural network classification for detecting preterm births using EHG records. Neurocomputing 2016, 188, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Acharya, U.R.; Sudarshan, V.K.; Rong, S.Q.; Tan, Z.; Lim, C.M.; Koh, J.E.; Nayak, S.; Bhandary, S.V.; Qing, S.; Tan, Z.; et al. Automated detection of premature delivery using empirical mode and wavelet packet decomposition techniques with uterine electromyogram signals. Comput. Biol. Med. 2017, 85, 33–42. [Google Scholar] [CrossRef]
- Borowska, M.; Brzozowska, E.; Kuć, P.; Oczeretko, E.; Mosdorf, R.; Laudański, P. Identification of preterm birth based on RQA analysis of electrohysterograms. Comput. Methods Programs Biomed. 2018, 153, 227–236. [Google Scholar] [CrossRef]
- Degbedzui, D.K.; Yüksel, M.E. Accurate diagnosis of term–preterm births by spectral analysis of electrohysterography signals. Comput. Biol. Med. 2020, 119, 1–8. [Google Scholar] [CrossRef]
- Mas-Cabo, J.; Prats-Boluda, G.; Perales, A.; Garcia-Casado, J.; Alberola-Rubio, J.; Ye-Lin, Y. Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment. Med. Biol. Eng. Comput. 2019, 57, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Mas-Cabo, J.; Prats-Boluda, G.; Ye-Lin, Y.; Alberola-Rubio, J.; Perales, A.; Garcia-Casado, J. Characterization of the effects of Atosiban on uterine electromyograms recorded in women with threatened preterm labor. Biomed. Signal Process. Control 2019, 52, 198–205. [Google Scholar] [CrossRef]
- Mas-Cabo, J.; Prats-Boluda, G.; Garcia-Casado, J.; Alberola-Rubio, J.; Monfort-Ortiz, R.; Martinez-Saez, C.; Perales, A.; Ye-Lin, Y. Electrohysterogram for ann-based prediction of imminent labor in women with threatened preterm labor undergoing tocolytic therapy. Sensors 2020, 20, 2681. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Hao, Y. Feature Extraction and Classification of EHG between Pregnancy and Labour Group Using Hilbert-Huang Transform and Extreme Learning Machine. Comput. Math. Methods Med. 2017, 1–9. [Google Scholar] [CrossRef]
- Peng, J.; Hao, D.; Yang, L.; Du, M.; Song, X.; Jiang, H.; Zhang, Y.; Zheng, D. Evaluation of electrohysterogram measured from different gestational weeks for recognizing preterm delivery: A preliminary study using random Forest. Biocybern. Biomed. Eng. 2020, 40, 352–362. [Google Scholar] [CrossRef]
- Chen, L.; Hao, Y.; Hu, X. Detection of preterm birth in electrohysterogram signals based on wavelet transform and stacked sparse autoencoder. PLoS ONE 2019, 14, 1–16. [Google Scholar] [CrossRef]
- Ren, P.; Yao, S.; Li, J.; Valdes-Sosa, P.A.; Kendrick, K.M. Improved Prediction of Preterm Delivery Using Empirical Mode Decomposition Analysis of Uterine Electromyography Signals. PLoS ONE 2015, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Mas-Cabo, J.; Prats-Boluda, G.; Garcia-Casado, J.; Alberola Rubio, J.; Perales Marín, A.J.; Ye Lin, Y. Design and Assessment of a Robust and Generalizable ANN-Based Classifier for the Prediction of Premature Birth by means of Multichannel Electrohysterographic Records. J. Sens. 2019, 1–13. [Google Scholar] [CrossRef]
- Terrien, J.; Marque, C.; Karlsson, B. Spectral characterization of human EHG frequency components based on the extraction and reconstruction of the ridges in the scalogram. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 2007, 1872–1875. [Google Scholar]
- Alamedine, D.; Diab, A.; Muszynski, C.; Karlsson, B.; Khalil, M.; Marque, C. Selection algorithm for parameters to characterize uterine EHG signals for the detection of preterm labor. Signal Image Video Process. 2014, 8, 1169–1178. [Google Scholar] [CrossRef]
- Lemancewicz, A.; Borowska, M.; Kuć, P.; Jasińska, E.; Laudański, P.; Laudański, T.; Oczeretko, E.; Kuc, P.; Jasinska, E.; Laudanski, P.; et al. Early diagnosis of threatened premature labor by electrohysterographic recordings—The use of digital signal processing. Biocybern. Biomed. Eng. 2016, 36, 302–307. [Google Scholar] [CrossRef]
- Vrhovec, J.; Macek-Lebar, A.; Rudel, D. Evaluating Uterine Electrohysterogram with Entropy. In 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing; Springer: Berlin/Heidelberg, Germany, 2007; Volume 16, pp. 144–147. [Google Scholar]
- Ahmed, M.U.; Chanwimalueang, T.; Thayyil, S.; Mandic, D.P. A multi variate multiscale fuzzy entropy algorithm with application to uterine EMG complexity analysis. Entropy 2017, 19, 1–18. [Google Scholar]
- Zhang, X.S.X.S.; Roy, R.J.; Jensen, E.W. EEG complexity as a measure of depth of anesthesia for patients. IEEE Trans. Biomed. Eng. 2001, 48, 1424–1433. [Google Scholar] [CrossRef]
- Moslem, B.; Hassan, M.; Khalil, M.; Marque, C.; Diab, M.O. Monitoring the progress of pregnancy and detecting labor using uterine electromyography. In Proceedings of the 2009 International Symposium On Bioelectronics; Bioinformatics; RMIT University: Melbourne, Australia, 2009; pp. 160–163. [Google Scholar]
- Diab, A.; Hassan, M.; Marque, C.; Karlsson, B. Performance analysis of four nonlinearity analysis methods using a model with variable complexity and application to uterine EMG signals. Med. Eng. Phys. 2014, 36, 761–767. [Google Scholar] [CrossRef] [Green Version]
- Karmakar, C.K.; Khandoker, A.H.; Gubbi, J.; Palaniswami, M. Complex correlation measure: A novel descriptor for Poincaré plot. Biomed. Eng. Online 2009, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Roy, B.; Ghatak, S. Nonlinear Methods to Assess Changes in Heart Rate Variability in Type 2 Diabetic Patients. Arq. Bras. Cardiol. 2013, 10, 317–327. [Google Scholar] [CrossRef]
- Naeem, S.M.; Seddik, A.F.; Eldosoky, M.A. New technique based on uterine electromyography nonlinearity for preterm delivery detection New technique based on uterine electromyography nonlinearity for preterm delivery detection. J. Eng. Technol. Res. 2014, 6, 107–114. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Smrdel, A.; Jager, F. Separating sets of term and pre-term uterine EMG records. Physiol. Meas. 2015, 36, 341–355. [Google Scholar] [CrossRef]
- Naeem, S.M.; Ali, A.F.; Eldosok Mohamed, M.A. Comparison between Using Linear and Non-linear Features to classify Uterine Electromyography Signals of Term and Preterm Deliveries. In Proceedings of the National Radio Science Conference, NRSC, Cairo, Egypt, 16–18 April 2013; pp. 1–11. [Google Scholar]
- Bekkar, M.; Akrouf Alitouche, T. Imbalanced Data Learning Approaches Review. Int. J. Data Min. Knowl. Manag. Process. 2013, 3, 15–33. [Google Scholar] [CrossRef]
- Wright, M.N.; Ziegler, A. Ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 2017, 77, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Hechenbichler, K.; Schliep, K. Weighted k-Nearest-Neighbor Techniques and Ordinal Classification Projektpartner Weighted k-Nearest-Neighbor Techniques and Ordinal Classification; 2004 Discussion Paper 399, SFB 386; Ludwig-Maximilians-Universität München: München, Germany, 2004. [Google Scholar] [CrossRef]
- Flach, P.A.; Kull, M. Precision-Recall-Gain Curves: PR Analysis Done Right. Adv. Neural Inf. Process. Syst. 2015, 28, 1–9. [Google Scholar]
- Alamedine, D.; Khalil, M.; Marque, C. Comparison of different EHG feature selection methods for the detection of preterm labor. Comput. Med. 2013, 2013, 1–9. [Google Scholar] [CrossRef]
- Esteves, G.; Mendes-Moreira, J. Churn perdiction in the telecom business. In Proceedings of the 11th International Conference on Digital Information Management, ICDIM 2016, Porto, Portugal, 19–21 September 2016; pp. 254–259. [Google Scholar]
- Kayabasi, A.; Yildiz, B.; Aslan, M.F.; Durdu, A. Comparison of ELM and ANN on EMG Signals Obtained for Control of Robotic-Hand. In Proceedings of the 10th International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2018, Iasi, Romania, 28–30 June 2018; pp. 1–5. [Google Scholar]
- Fergus, P.; Cheung, P.; Hussain, A.; Al-Jumeily, D.; Dobbins, C.; Iram, S. Prediction of preterm deliveries from EHG signals using machine learning. PLoS ONE 2013, 8, e77154. [Google Scholar] [CrossRef]
- Mohamed Bedeeuzzaman, A.S. Preterm Birth Prediction Using EHG Signals. Int. J. Sci. Res. Eng. Trends 2019, 5, 2395–2566. [Google Scholar]
- Idowu, I.O.; Fergus, P.; Hussain, A.; Dobbins, C.; Khalaf, M.; Casana Eslava, R.V.; Keight, R. Artificial Intelligence for Detecting Preterm Uterine Activity in Gynacology and Obstertric Care. In Proceedings of the 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, Liverpool, UK, 26–28 October 2015; pp. 215–220. [Google Scholar] [CrossRef] [Green Version]
- You, J.; Kim, Y.; Seok, W.; Lee, S.; Sim, D.; Suk, K.P.; Park, C. Multivariate Time–Frequency Analysis of Electrohysterogram for Classification of Term and Preterm Labor. J. Electr. Eng. Technol. 2019, 14, 897–916. [Google Scholar] [CrossRef]
- Murthy, H.S.N.; Meenakshi, D.M. ANN, SVM and KNN Classifiers for Prognosis of Cardiac Ischemia—A Comparison. Bonfring Int. J. Res. Commun. Eng. 2015, 5, 7–11. [Google Scholar] [CrossRef]
- Aditya, S.; Tibarewala, D.N. Comparing ANN, LDA, QDA, KNN and SVM algorithms in classifying relaxed and stressful mental state from two-channel prefrontal EEG data. Int. J. Artif. Intell. Soft Comput. 2012, 3, 143. [Google Scholar] [CrossRef]
- Pandey, M.; Chauhan, M.; Awasthi, S. Interplay of cytokines in preterm birth. Indian J. Med. Res. 2017, 146, 316–327. [Google Scholar]
- Van Zijl, M.D.; Koullali, B.; Mol, B.W.J.; Pajkrt, E.; Oudijk, M.A. Prevention of preterm delivery: Current challenges and future prospects. Int. J. Womens Health 2016, 8, 633–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hira, Z.M.; Gillies, D.F. A review of feature selection and feature extraction methods applied on microarray data. Adv. Bioinform. 2015, 2015, 198363. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.C.; Dewi, C.; Huang, S.W.; Caraka, R.E. Selecting critical features for data classification based on machine learning methods. J. Big Data 2020, 7, 1–26. [Google Scholar] [CrossRef]
- Rostami, M.; Forouzandeh, S.; Berahmand, K.; Soltani, M. Integration of multi-objective PSO based feature selection and node centrality for medical datasets. Genomics 2020, 112, 4370–4384. [Google Scholar] [CrossRef]
- Ye-Lin, Y.; Garcia-Casado, J.; Prats-Boluda, G.; Alberola-Rubio, J.; Perales, A. Automatic Identification of Motion Artifacts in EHG Recording for Robust Analysis of Uterine Contractions. Comput. Math. Methods Med. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Happillon, T.; Muszynski, C.; Zhang, F.; Marque, C.; Istrate, D. Detection of Movement Artefacts and Contraction Bursts Using Accelerometer and Electrohysterograms for Home Monitoring of Pregnancy. IRBM 2018, 39, 379–385. [Google Scholar] [CrossRef]
- Hao, D.; Peng, J.; Wang, Y.; Liu, J.; Zhou, X.; Zheng, D. Evaluation of convolutional neural network for recognizing uterine contractions with electrohysterogram. Comput. Biol. Med. 2019, 113, 1–8. [Google Scholar] [CrossRef]
- Muszynski, C.; Happillon, T.; Azudin, K.; Tylcz, J.-B.; Istrate, D.; Marque, C. Automated electrohysterographic detection of uterine contractions for monitoring of pregnancy: Feasibility and prospects. BMC Pregnancy Childbirth 2018, 18, 1–8. [Google Scholar] [CrossRef] [Green Version]
EHG Temporal Parameters | EHG Spectral Parameters | EHG Nonlinear Parameters | Obstetric Data |
---|---|---|---|
Peak-to-peak amplitude | DF1 DF2 H/L ratio Deciles [D1–D9] SMR | Binary Lempel-Ziv Multistate Lempel-Ziv (n = 6) Sample entropy Spectral entropy Fuzzy entropy Time reversibility SD1 SD2 SD1/SD2 | Cervical length Gestational age at moment of recording Maternal age Gestations Parity Abortions |
RF | ELM | KNN | |||||
---|---|---|---|---|---|---|---|
Criterion | F1-Score | Sensitivity | F1-Score | Sensitivity | F1-Score | Sensitivity | |
Input Features | |||||||
EHG 10th–90th percentiles + Obstetric data | RFF1_1 | RFSEN_1 | ELMF1_1 | ELMSEN_1 | KNNF1_1 | KNNSEN_1 | |
EHG 50th + Obstetric data | RFF1_2 | RFSEN_2 | ELMF1_2 | ELMSEN_2 | KNNF1_2 | KNNSEN_2 | |
EHG 10th–90th percentiles | RFF1_3 | RFSEN_3 | ELMF1_3 | ELMSEN_3 | KNNF1_3 | KNNSEN_3 | |
EHG 50th percentile | RFF1_4 | RFSEN_4 | ELMF1_4 | ELMSEN_4 | KNNF1_4 | KNNSEN_4 |
Opt. Criterion | Inputs | Classifier | Test_F1 | Test_Sens | Test_Spec |
---|---|---|---|---|---|
F1-Score Sensitivity | EHGP10–P90 + Obs | RFF1_1 | 77.51 ± 7.58% (9.8%) | 66.22 ± 11.70% (17.7%) | 97.12 ± 4.13% (4.3%) |
EHGP50 + Obs | RFF1_2 | 80.35 ± 6.78% (8.4%) | 74.00 ± 10.41% (14.1%) | 92.25 ± 5.35% (5.8%) | |
EHGP10–P90 | RFF1_3 | 77.81 ± 8.71% (11.2%) | 65.78 ± 11.61% (17.6%) | 98.29 ± 2.51% (2.6%) | |
EHGP50 | RFF1_4 | 77.7 ± 6.6% (8.5%) | 71.44 ± 10.99% (15.4%) | 90.72 ± 4.58% (5.0%) |
Opt. Criterion | Inputs | Classifier | Test_F1 | Test_Sens | Test_Spec |
---|---|---|---|---|---|
F1-score | EHGP10–P90 + Obs | ELMF1_1 | 80.00 ± 4.98% (6.0%) | 87.56 ± 8.53% (9.7%) | 74.77 ± 7.32% (9.8%) |
EHGP50 + Obs | ELMF1_2 | 82.14 ± 5.88% (7.2%) | 89.89 ± 7.14% (7.9%) | 76.40 ± 8.12% (10.6%) | |
EHGP10–P90 | ELMF1_3 | 78.41 ± 4.55% (5.8%) | 85.89 ± 7.91% (9.2%) | 73.24 ± 6.93% (9.5%) | |
EHGP50 | ELMF1_4 | 79.00 ± 5.06% (6.4%) | 86.22 ± 6.65% (7.7%) | 73.87 ± 8.64% (11.7%) | |
Sensitivity | EHGP10–P90 + Obs | ELMSEN_1 | 74.83 ± 3.88% (5.2%) | 95.44 ± 4.59% (4.8%) | 51.35 ± 9.28% (18.1%) |
EHGP50 + Obs | ELMSEN_2 | 75.42 ± 3.96% (5.3%) | 96.00 ± 5.13% (5.3%) | 52.25 ± 9.58% (18.3%) | |
EHGP10–P90 | ELMSEN_3 | 73.13 ± 3.10% (4.2%) | 94.78 ± 4.61% (4.9%) | 47.57 ± 8.83% (18.6%) | |
EHGP50 | ELMSEN_4 | 73.83 ± 3.24% (4.4%) | 94.89 ± 5.01% (5.3%) | 49.37 ± 9.63% (19.5%) |
Opt. Criterion | Inputs | Classifier | Test_F1 | Test_Sens | Test_Spec |
---|---|---|---|---|---|
F1-score | EHGP10–P90 + Obs | KNNF1_1 | 84.18 ± 9.47% (11.2%) | 79.33 ± 13.23% (16.7%) | 93.42 ± 6.34% (6.8%) |
EHGP50 + Obs | KNNF1_2 | 74.16 ± 5.07% (6.8%) | 93.33 ± 6.37% (6.8%) | 52.43 ± 9.59% (18.3%) | |
EHGP10–P90 | KNNF1_3 | 84.67 ± 8.46% (10.0%) | 80.56 ± 12.57% (15.6%) | 92.70± 8.81% (9.5%) | |
EHGP50 | KNNF1_4 | 74.13 ± 4.57% (6.2%) | 90.89 ± 6.55% (7.2%) | 55.77 ± 9.67% (17.3%) | |
Sensitivity | EHGP10–P90 + Obs | KNNSEN_1 | 79.8 ± 8.29% (10.4%) | 82.78 ± 12.13% (14.7%) | 80.36 ± 9.76% (12.1%) |
EHGP50 + Obs | KNNSEN_2 | 72.98 ± 4.00% (5.5%) | 94.22 ± 5.67% (6.0%) | 47.93 ± 8.98% (18.7%) | |
EHGP10–P90 | KNNSEN_3 | 78.63 ± 8.60% (10.9%) | 83.56 ± 12.47% (14.9%) | 76.58 ± 14.2% (18.5%) | |
EHGP50 | KNNSEN_4 | 73.19 ± 4.31% (5.9%) | 91.78 ± 7.15% (7.8%) | 52.07 ± 9.39% (18.0%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prats-Boluda, G.; Pastor-Tronch, J.; Garcia-Casado, J.; Monfort-Ortíz, R.; Perales Marín, A.; Diago, V.; Roca Prats, A.; Ye-Lin, Y. Optimization of Imminent Labor Prediction Systems in Women with Threatened Preterm Labor Based on Electrohysterography. Sensors 2021, 21, 2496. https://doi.org/10.3390/s21072496
Prats-Boluda G, Pastor-Tronch J, Garcia-Casado J, Monfort-Ortíz R, Perales Marín A, Diago V, Roca Prats A, Ye-Lin Y. Optimization of Imminent Labor Prediction Systems in Women with Threatened Preterm Labor Based on Electrohysterography. Sensors. 2021; 21(7):2496. https://doi.org/10.3390/s21072496
Chicago/Turabian StylePrats-Boluda, Gema, Julio Pastor-Tronch, Javier Garcia-Casado, Rogelio Monfort-Ortíz, Alfredo Perales Marín, Vicente Diago, Alba Roca Prats, and Yiyao Ye-Lin. 2021. "Optimization of Imminent Labor Prediction Systems in Women with Threatened Preterm Labor Based on Electrohysterography" Sensors 21, no. 7: 2496. https://doi.org/10.3390/s21072496