A Comprehensive Comparison and Validation of Published Methods to Detect Turn Switch during Alpine Skiing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Experimental Approach
2.2. Instruments
2.2.1. 3D Motion Capture
2.2.2. Inertial Measurement Units
2.2.3. Instrumented Boots
2.2.4. Pressure Insoles
2.2.5. Force Plates
2.2.6. Electromyography
2.3. Turn Detection Methodologies
2.4. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reid, R.C. A Kinematic and Kinetic Study of Alpine Skiing Technique in Slalom; Norwegian School of Sport Sciences: Oslo, Norway, 2010. [Google Scholar]
- Morawski, J.M. Control systems approach to a ski-turn analysis. J. Biomech. 1973, 6, 267–279. [Google Scholar] [CrossRef]
- Supej, M.; Kugovnik, O.; Nemec, B. Kinematic determination of the beginning of a ski turn. Kinesiol. Slov 2003, 9, 11–17. [Google Scholar]
- Fasel, B.; Spörri, J.; Gilgien, M.; Gerber, N.; Falbriard, M.; Müller, E.; Aminian, K.; Müller, E.; Kröll, J.; Lindinger, S. Imu and gnss-based turn switch detection in alpine ski racing. In Science and Skiing; Meyer & Meyer Sports: Wien, Austria, 2018; Volume 7. [Google Scholar]
- Martínez, A.; Nakazato, K.; Scheiber, P.; Snyder, C.; Stöggl, T. Comparison of the turn switch time points measured by portable force platforms and pressure insoles. Front. Sports Act. Living 2020, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, E. Analysis of the biomechanical characteristics of different swinging techniques in alpine skiing. J. Sports Sci. 1994, 12, 261–278. [Google Scholar] [CrossRef]
- Müller, E.; Bartlett, R.; Raschner, C.; Schwameder, H.; Benko-Bernwick, U.; Lindinger, S. Comparisons of the ski turn techniques of experienced and intermediate skiers. J. Sports Sci. 1998, 16, 545–559. [Google Scholar] [CrossRef]
- Klous, M.; Müller, E.; Schwameder, H. Collecting kinematic data on a ski/snowboard track with panning, tilting, and zooming cameras: Is there sufficient accuracy for a biomechanical analysis? J. Sports Sci. 2010, 28, 1345–1353. [Google Scholar] [CrossRef]
- Martínez, A.; Jahnel, R.; Buchecker, M.; Snyder, C.; Brunauer, R.; Stöggl, T. Development of an automatic alpine skiing turn detection algorithm based on a simple sensor setup. Sensors 2019, 19, 902. [Google Scholar] [CrossRef] [Green Version]
- Spörri, J.; Kröll, J.; Gilgien, M.; Müller, E. Sidecut radius and the mechanics of turning-equipment designed to reduce risk of severe traumatic knee injuries in alpine giant slalom ski racing. Br. J. Sports Med. 2016, 50, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Spörri, J.; Schiefermuller, C.; Müller, E. Collecting kinematic data on a ski track with optoelectronic stereophotogrammetry: A methodological study assessing the feasibility of bringing the biomechanics lab to the field. PLoS ONE 2016, 11, e0161757. [Google Scholar] [CrossRef] [Green Version]
- Fasel, B.; Spörri, J.; Schütz, P.; Lorenzetti, S.; Aminian, K. An inertial sensor-based method for estimating the athlete’s relative joint center positions and center of mass kinematics in alpine ski racing. Front. Physiol. 2017, 8, 850. [Google Scholar] [CrossRef]
- Ulrich, B.; Fasel, B.; Spörri, J.; Müller, E.; Aminian, K. Using inertial sensors to compute an alpine ski racing specific full body kinematic model–an application to track the distance between ankle joint and athlete’s center of mass. Proceeedings of the 7th Annual Congress of the Swiss Society of Sports Sciences, Lausanne, Switzerland, 13–14 February 2015. [Google Scholar]
- Gerber, N. Automatic Turn Switch Detection in Alpine Ski Racing; Ecole Polytechnique Federale de Lausanne: Lausanne, Switzerland, 2016. [Google Scholar]
- Fasel, B.; Spörri, J.; Gilgien, M.; Gerber, N.; Falbriard, M.; Müller, E.; Aminian, K. Imu and gnss-based turn switch detection in alpine ski racing. In Abstract Book of the 7th International Congress on Science and Skiing (St. Christoph am Arlberg); Meyer & Meyer: Maidenhead, UK, 2016. [Google Scholar]
- Supej, M.; Sætran, L.; Oggiano, L.; Ettema, G.; Šarabon, N.; Nemec, B.; Holmberg, H.C. Aerodynamic drag is not the major determinant of performance during giant slalom skiing at the elite level. Scand. J. Med. Sci. Sports 2013, 23, e38–e47. [Google Scholar] [CrossRef]
- Supej, M. Differential specific mechanical energy as a quality parameter in racing alpine skiing. J. Appl. Biomech. 2008, 24, 121–129. [Google Scholar] [CrossRef]
- Supej, M.; Holmberg, H.C. How gate setup and turn radii influence energy dissipation in slalom ski racing. J. Appl. Biomech. 2010, 26, 454–464. [Google Scholar] [CrossRef]
- Spörri, J.; Kröll, J.; Schwameder, H.; Müller, E. Turn characteristics of a top world class athlete in giant slalom: A case study assessing current performance prediction concepts. Int. J. Sports Sci. Coach. 2012, 7, 647–659. [Google Scholar] [CrossRef]
- Gilgien, M.; Spörri, J.; Limpach, P.; Geiger, A.; Müller, E. The effect of different global navigation satellite system methods on positioning accuracy in elite alpine skiing. Sensors 2014, 14, 18433–18453. [Google Scholar] [CrossRef] [Green Version]
- Gilgien, M.; Spörri, J.; Chardonnens, J.; Kröll, J.; Limpach, P.; Müller, E. Determination of the centre of mass kinematics in alpine skiing using differential global navigation satellite systems. J. Sports Sci. 2015, 33, 960–969. [Google Scholar] [CrossRef]
- Supej, M.; Hebert-Losier, K.; Holmberg, H.C. Impact of the steepness of the slope on the biomechanics of world cup slalom skiers. Int. J. Sports Physiol. Perform. 2015, 10, 361–368. [Google Scholar] [CrossRef]
- Fasel, B.; Sporri, J.; Schutz, P.; Lorenzetti, S.; Aminian, K. Validation of functional calibration and strap-down joint drift correction for computing 3d joint angles of knee, hip, and trunk in alpine skiing. PLoS ONE 2017, 12, e0181446. [Google Scholar] [CrossRef]
- Fasel, B.; Spörri, J.; Gilgien, M.; Boffi, G.; Chardonnens, J.; Müller, E.; Aminian, K. Three-dimensional body and centre of mass kinematics in alpine ski racing using differential gnss and inertial sensors. Remote Sens. 2016, 8, 671. [Google Scholar] [CrossRef] [Green Version]
- Fasel, B.; Gilgien, M.; Spörri, J.; Aminian, K. A new training assessment method for alpine ski racing: Estimating center of mass trajectory by fusing inertial sensors with periodically available position anchor points. Front. Physiol. 2018, 9. [Google Scholar] [CrossRef]
- Fasel, B.; Spörri, J.; Chardonnens, J.; Kröll, J.; Müller, E.; Aminian, K. Joint inertial sensor orientation drift reduction for highly dynamic movements. IEEE J Biomed Health Inform 2018, 22, 77–86. [Google Scholar] [CrossRef]
- Yamagiwa, S.; Ohshima, H.; Shirakawa, K. Development of skill scoring system for ski and snowboard. In Proceedings of the International Congress on Sports Science Research and Technology Support, Rome, Italy, 24–26 October 2014; Springer: Berlin, Germany, 2014; pp. 1–15. [Google Scholar]
- Yu, G.; Jang, Y.J.; Kim, J.; Kim, J.H.; Kim, H.Y.; Kim, K.; Panday, S.B. Potential of imu sensors in performance analysis of professional alpine skiers. Sensors 2016, 16, 463. [Google Scholar] [CrossRef] [Green Version]
- Supej, M.; Kugovnik, O.; Nemec, B. Dgps measurement system in alpine skiing track and center of mass estimation. Proceedings of First Joint International Pre-Olympic Conference of Sports Sciences and Sports Engineering, Nanjing, China, 4–7 August 2008; pp. 120–125. [Google Scholar]
- Adelsberger, R.; Aufdenblatten, S.; Gilgien, M.; Tröster, G. On bending characteristics of skis in use. Procedia Eng. 2014, 72, 362–367. [Google Scholar] [CrossRef] [Green Version]
- Kondo, A.; Doki, H.; Hirose, K. Motion analysis and joint angle measurement of skier gliding on the actual snow field using inertial sensors. Procedia Eng. 2013, 60, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Kröll, J.; Müller, E.; Seifert, J.G.; Wakeling, J.M. Changes in quadriceps muscle activity during sustained recreational alpine skiing. J. Sports Sci. Med. 2011, 10, 81. [Google Scholar]
- Stricker, G.; Scheiber, P.; Lindenhofer, E.; Müller, E. Determination of forces in alpine skiing and snowboarding: Validation of a mobile data acquisition system. Eur. J. Sport Sci. 2010, 10, 31–41. [Google Scholar] [CrossRef]
- Nakazato, K.; Scheiber, P.; Müller, E. A comparison of ground reaction forces determined by portable force-plate and pressure-insole systems in alpine skiing. J. Sports Sci. Med. 2011, 10, 754. [Google Scholar]
- Nakazato, K.; Scheiber, P.; Müller, E. Comparison between the force application point determined by portable force plate system and the center of pressure determined by pressure insole system during alpine skiing. Sports Eng. 2013, 16, 297–307. [Google Scholar] [CrossRef]
- Spörri, J.; Kröll, J.; Haid, C.; Fasel, B.; Müller, E. Potential mechanisms leading to overuse injuries of the back in alpine ski racing: A descriptive biomechanical study. Am. J. Sports Med. 2015, 43, 2042–2048. [Google Scholar] [CrossRef]
- Vaverka, F.; Vodickova, S.; Elfmark, M. Kinetic analysis of ski turns based on measured ground reaction forces. J. Appl. Biomech. 2012, 28, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Kadaba, M.P.; Ramakrishnan, H.; Wootten, M. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 1990, 8, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Dempster, W.T. Space Requirements of the Seated Operator, Geometrical, Kinematic, and Mechanical Aspects of the Body with Special Reference to the Limbs; Michigan State University: East Lansing, MI, USA, 1955. [Google Scholar]
- Winter, D.A.; Sidwall, H.G.; Hobson, D.A. Measurement and reduction of noise in kinematics of locomotion. J. Biomech. 1974, 7, 157–159. [Google Scholar] [CrossRef]
- Fasel, B. Inertial Sensor Functional Calibration and Joint Drift Correction. Available online: https://codeocean.com/capsule/1305245/tree/v1 (accessed on 20 March 2020).
- Snyder, C.; Martínez, A.; Brunauer, R.; Stöggl, T.L. Validation of a wearable system for edge angle estimation during alpine skiing. In Science and Skiing; University of Jyväskylä: Jyväskylä, Finland, 2020; Volume 8. [Google Scholar]
- Martínez, A.; Brunauer, R.; Venek, V.; Snyder, C.; Jahnel, R.; Buchecker, M.; Thorwartl, C.; Stöggl, T.L. Development and validation of a gyroscope-based turn detection algorithm for alpine skiing in the field. Front. Sports Act. Living 2019, 1, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for semg sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Fritsch, F.N.; Carlson, R.E. Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 1980, 17, 238–246. [Google Scholar] [CrossRef]
- Moore, S.R.; Fritz, J.; Kröll, J.; Stöggl, T.; Schwameder, H. Consistency and validity of acute foot-strike pattern alterations during laboratory-based running. ISBS Proc. Arch. 2020, 38, 848. [Google Scholar]
Method | Name | Sensor Type | S [n] | L [n] |
---|---|---|---|---|
Crossing point between the CoM trajectory and the arithmetic mean of the skis’ trajectories [3] | Supej MCS * | Motion capture | 14 | 13 |
Supej IMU | Inertial meas. unit | 1 | 3 | |
Ski edge change frame selection [8] | Klous Video | Video | 13 | 11 |
Minimum value of the ground reaction force/ pressure [34] | Nakazato PI | Pressure insole | 11 | 7 |
Nakazato PFP | Force platform | 2 | 2 | |
Combination of knee angle and pronounced EMG amplitude decrease [32] | Kröll EMG | Motion capture + muscle activity | 9 | 10 |
Point when resultant reaction force equals the force acting perpendicular to the ground [37] | Vaverka PI | Pressure insole | 10 | - |
Inflection point in the head trajectory [31] | Kondo MCS | Motion capture | 14 | 13 |
Zero crossing in the lateral axis of an accelerometer placed on the upper torso [27] | Yamawiga MCS | Motion capture | 14 | 12 |
Yamawiga IMU | Inertial meas. unit | 12 | 11 | |
Change in sign of the angular velocity component calculated from position data [30] | Adelsberger MCS | Motion capture | 13 | 12 |
Functional minima of the ground reaction force/ pressure [36] | Spörri PI | Pressure insole | 11 | 7 |
Spörri PFP | Force platform | 2 | 2 | |
Zero crossing of the pelvis roll angle [28] | Yu IMU | Inertial meas. unit | 9 | 8 |
Intersection between right and left knee abduction-adduction angle [14] | Gerber MCS | Motion capture | 14 | 12 |
Gerber IMU | Inertial meas. unit | 5 | 4 | |
Intersection of right and left vertical distance between CoM and ankle joint center [13] | Ulrich MCS | Motion capture | 14 | 12 |
Ulrich IMU | Inertial meas. unit | 9 | 7 | |
Intersection of right and left total distance between CoM and ankle joint center [15] | Fasel Ank CoM MCS | Motion capture | 13 | 10 |
Fasel Ank CoM IMU | Inertial meas. unit | 6 | 7 | |
Inflection point of the CoM trajectory [15] | Fasel CoM IP MCS | Motion capture | 14 | 12 |
Peak angular velocity in the roll axis of the shank [43] | Martinez CTD | Instrumented boot | 10 | 8 |
Martinez MCS | Motion capture | 14 | 10 | |
Crossing between right and left vertical ground reaction force [5] | Martinez Crossing PI | Pressure insole | 9 | 9 |
Martinez Crossing PFP | Force platform | 1 | 1 | |
Zero crossing of the average right and left shank angular velocity in the yaw axis [new] | Martinez Yaw CTD | Instrumented boot | 10 | 7 |
Martinez Yaw MCS | Motion capture | 14 | 12 |
Method | Sensors | Diff [s] | p-Value | n |
---|---|---|---|---|
Nakazato | PFP vs. PI | 0.04 | 0.755 | 15 |
Yamagiwa | MCS vs. IMU | 0.14 | <0.001 | 330 |
Spörri | PFP vs. PI | 0.00 | 0.140 | 15 |
Gerber | MCS vs. IMU | 0.18 | <0.001 | 135 |
Ulrich | MCS vs. IMU | 0.15 | <0.001 | 225 |
Fasel Ank CoM | MCS vs. IMU | 0.01 | <0.001 | 176 |
Martinez | MCS vs. IMU | 0.04 | <0.001 | 239 |
Martinez Crossing | PFP vs. PI | 0.05 | 0.045 | 28 |
Martinez Yaw | MCS vs. IMU | 0.14 | <0.001 | 255 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, A.; Snyder, C.; Moore, S.R.; Stöggl, T. A Comprehensive Comparison and Validation of Published Methods to Detect Turn Switch during Alpine Skiing. Sensors 2021, 21, 2573. https://doi.org/10.3390/s21072573
Martínez A, Snyder C, Moore SR, Stöggl T. A Comprehensive Comparison and Validation of Published Methods to Detect Turn Switch during Alpine Skiing. Sensors. 2021; 21(7):2573. https://doi.org/10.3390/s21072573
Chicago/Turabian StyleMartínez, Aaron, Cory Snyder, Stephanie R. Moore, and Thomas Stöggl. 2021. "A Comprehensive Comparison and Validation of Published Methods to Detect Turn Switch during Alpine Skiing" Sensors 21, no. 7: 2573. https://doi.org/10.3390/s21072573
APA StyleMartínez, A., Snyder, C., Moore, S. R., & Stöggl, T. (2021). A Comprehensive Comparison and Validation of Published Methods to Detect Turn Switch during Alpine Skiing. Sensors, 21(7), 2573. https://doi.org/10.3390/s21072573