Improved Mask R-CNN for Aircraft Detection in Remote Sensing Images
Abstract
:1. Introduction
2. Related Work
2.1. Traditional Methods
2.2. Deep Learning Methods
3. Method
3.1. Improved SC-conv
3.2. Dilated Convolution
4. Experiment
4.1. Dataset
4.2. Implementation Details
4.3. Result and Analysis
4.3.1. Mask R-CNN vs. SCMask R-CNN
4.3.2. SCMask R-CNN vs. Mask R-CNN+05SC
4.3.3. Loss and Training Time
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, Z.Y. Aircraft Target Detection and Recognition in Remote Sensing Image Based on Deep Learning. Master’s Thesis, Department Surveying and Mapping, PLA Strategic Support Force Information Engineering University, Zhengzhou, China, 2020. [Google Scholar]
- Deng, R.Z.; Chen, Q.H.; Chen, Q.; Liu, X.G. A Deformable Feature Pyramid Network for Ship Detection from Remote Sensing Images. Acta Geod. Cartogr. Sin. 2020, 49, 787–797. [Google Scholar]
- Ren, R.L. Research on Automatic Detection of Aircraft Targets in High Resolution Remote Sensing Images. Master’s Thesis, Department Master of Engineering, University of Electronic Science and Technology of China, Chengdu, China, 2019. [Google Scholar]
- Su, D. Research on Ocean Internal Waves Detection Based on Deep Learning in Remote Sensing Images. Master’s Thesis, Department Pattern Recognition and Intelligent System, Inner Mongolia University, Huhehaote, China, 2019. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Uijlings, J.R.R.; Van De Sande, K.E.A.; Gevers, T.; Smeulders, A.W.M. Selective search for object recognition. Int. J. Comput. Vis. 2013, 104, 154–171. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Vasconcelos, N. Cascade R-CNN: High Quality Object Detection and Instance Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, W.; Wang, L.; Ren, P. Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments. IEEE Access 2019, 8, 1935–1944. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Sun, S.R.J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar]
- Wang, J.Q.; Li, J.S.; Zhou, X.S.; Zhang, X. Improved SSD Algorithm and Its Performance Analysis of Small Trager Detection in Remote Sensing Images. Acta Opt. Sin. 2019, 39, 373–382. [Google Scholar]
- Zhao, P.; Gao, H.; Zhang, Y.; Li, H.; Yang, R. An Aircraft Detection Method Based on Improved Mask R-CNN in Remotely Sensed Imagery. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 1370–1373. [Google Scholar]
- Chang, P.F.; Duan, Y.L. Application of Faster R-CNN Model in Aircraft Target Detection in Remote Sensing Image. Radiogr. Eng. 2019, 49, 925–929. [Google Scholar]
- Yu, D.H.; Guo, H.T.; Zhang, B.M.; Zhao, C.; Lu, L.J. Aircraft Detection in Remote Sensing Images Using Cascade Convolutional Neural Networks. Acta Geod. Cartogr. Sin. 2019, 48, 1046–1058. [Google Scholar]
- Yuan, M.Y.; Jiang, T.; Wang, X. Aircraft Target Detection in Remote Sensing Image Based on Improved Yolov3 Algorithm. J. Geom. Sci. Technol. Decor. 2019, 36, 614–619. [Google Scholar]
- Liu, Z.; Hu, J.; Weng, L.; Yang, Y. Rotated region based CNN for ship detection. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 900–904. [Google Scholar]
- Su, H.; Wei, S.; Yan, M.; Wang, C.; Shi, J.; Zhang, X. Object Detection and Instance Segmentation in Remote Sensing Imagery Based on Precise Mask R-CNN. In Proceedings of the IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 1454–1457. [Google Scholar]
- Wang, L.; Liao, J.; Xu, C. Vehicle Detection Based on Drone Images with the Improved Faster R-CNN. In Proceedings of the 2019 11th International Conference on Machine Learning and Computing, Zhuhai, China, 22–24 February 2019; pp. 466–471. [Google Scholar]
- Wu, J.; Duan, J.; He, L.Q.; Li, Y.C.; Zhu, W.T. Research on Aircraft Detection Algorithm of DS-YOLO Network in Remote Sensing Images. Comput. Eng. Appl. 2021, 57, 181–187. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE ICCV, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Zhang, Y.; You, Y.; Wang, R.; Liu, F.; Liu, J. Nearshore vessel detection based on Scene-mask R-CNN in remote sensing image. In Proceedings of the 2018 International Conference on Network Infrastructure and Digital Content (IC-NIDC), Guiyang, China, 22–24 August 2018; pp. 76–80. [Google Scholar]
- Chen, J.; Wang, G.; Luo, L.; Gong, W.; Cheng, Z. Building Area Estimation in Drone Aerial Images Based on Mask R-CNN. IEEE Geosci. Remote. Sens. Lett. 2020, 1–4. [Google Scholar] [CrossRef]
- Nie, S.; Jiang, Z.; Zhang, H.; Cai, B.; Yao, Y. Inshore Ship Detection Based on Mask R-CNN. In Proceedings of the IGARSS 2018, Valencia, Spain, 22–27 July 2018; pp. 693–696. [Google Scholar]
- Stiller, D.; Stark, T.; Wurm, M.; Dech, S.; Taubenbock, H. Large-scale building extraction in very high-resolution aerial imagery using Mask R-CNN. In Proceedings of the 2019 Joint Urban Remote Sensing Event (JURSE), Vannes, France, 22–24 May 2019; pp. 1–4. [Google Scholar]
- Zhu, W.T.; Xie, B.R.; Wang, Y.; Shen, J.; Zhu, H.W. Survey on Aircraft Detection in Optical Remote Sensing Images. Comput. Sci. 2020, 47, 1–8. [Google Scholar]
- Li, X.Y. Object Detection in Remote Sensing Images Based on Deep Learning. Master’s Thesis, Department Computer Application Technology, University of Science and Technology of China, Hefei, China, 2019. [Google Scholar]
- Zhao, K. Research on Remote Sensing Images Object Detection Method Based on Deep Learning. Master’s Thesis, Department Information and Communication Engineering, Hunan University, Changsha, China, 2019. [Google Scholar]
- Cao, C.; Wu, J.; Zeng, X.; Feng, Z.; Wang, T.; Yan, X.; Wu, Z.; Wu, Q.; Huang, Z. Research on Airplane and Ship Detection of Aerial Remote Sensing Images Based on Convolutional Neural Network. Sensors 2020, 20, 4696. [Google Scholar] [CrossRef] [PubMed]
- Li, W.B.; He, R. Aircraft Detection Models of Remote Sensing Images Based on FCN and CNN. Comput. Eng. Appl. 2020, 46, 268–276. [Google Scholar] [CrossRef]
- Wang, X.L.; Su, S.Z.; Liu, X.Y.; Cai, G.R.; Li, S.Z. Cascade Convolutional Neural Networks for Airplane Detection. CAAI Trans. Intell. 2020, 15, 1–8. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Liu, J.-J.; Hou, Q.; Cheng, M.-M.; Wang, C.; Feng, J. Improving Convolutional Networks With Self-Calibrated Convolutions. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 10093–10102. [Google Scholar]
- Xia, G.-S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A Large-Scale Dataset for Object Detection in Aerial Images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3974–3983. [Google Scholar]
- Hendrycks, D.; Mu, N.; Cubuk, E.; Zoph, B.; Gilmer, J.; Lakshminarayanan, B. Augmix: A Simple Data Processing Method to Improve Robustness and Uncertainty. arXiv 2019, arXiv:1912.02781v1. [Google Scholar]
Size/px | 0–32 | 32–64 | 64–128 | 128–256 | >256 |
---|---|---|---|---|---|
training set | 1216 | 2055 | 1837 | 530 | 43 |
validation set | 125 | 132 | 244 | 137 | 10 |
testing set | 136 | 305 | 135 | 88 | 15 |
WFA-1400 | 1477 | 2492 | 2216 | 755 | 68 |
Method | AP/% | AP50/% | mIoU/% | Training Time/h |
---|---|---|---|---|
Mask R-CNN | 50.2 | 94.4 | 72.3 | 50.2 |
Mask R-CNN+05SC | 49.9 | 95.6 | 71.7 | 52.5 |
Mask R-CNN+06SC | 50.5 | 95.9 | 72.1 | 52.8 |
Mask R-CNN+07SC | 51.2 | 96.5 | 72.7 | 53 |
SCMask R-CNN | 51.7 | 96.8 | 72.8 | 53.3 |
Mask R-CNN+09SC | 51.4 | 96.8 | 72.7 | 54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Feng, D.; Cao, C.; Zeng, X.; Feng, Z.; Wu, J.; Huang, Z. Improved Mask R-CNN for Aircraft Detection in Remote Sensing Images. Sensors 2021, 21, 2618. https://doi.org/10.3390/s21082618
Wu Q, Feng D, Cao C, Zeng X, Feng Z, Wu J, Huang Z. Improved Mask R-CNN for Aircraft Detection in Remote Sensing Images. Sensors. 2021; 21(8):2618. https://doi.org/10.3390/s21082618
Chicago/Turabian StyleWu, Qifan, Daqiang Feng, Changqing Cao, Xiaodong Zeng, Zhejun Feng, Jin Wu, and Ziqiang Huang. 2021. "Improved Mask R-CNN for Aircraft Detection in Remote Sensing Images" Sensors 21, no. 8: 2618. https://doi.org/10.3390/s21082618
APA StyleWu, Q., Feng, D., Cao, C., Zeng, X., Feng, Z., Wu, J., & Huang, Z. (2021). Improved Mask R-CNN for Aircraft Detection in Remote Sensing Images. Sensors, 21(8), 2618. https://doi.org/10.3390/s21082618