Single-Trial Kernel-Based Functional Connectivity for Enhanced Feature Extraction in Motor-Related Tasks
Abstract
:1. Introduction
2. Methods
2.1. Kernel-Based Covariance Function
2.2. Gaussian Functional Connectivity from Kernel-Based Spectral Distribution
3. Experimental Set-Up
3.1. EEG Data Description
3.2. Preprocessing and t-f Extraction
4. Results and Discussion
4.1. Influencing FC Parameters on Accuracy Estimation
4.2. Estimated Classifier Accuracy of Individuals
4.3. Interpretation of Subject Clusters Using Functional Connectivity Patterns
5. Concluding Remarks
6. Author Resume
- Daniel Guillermo García-Murillo received his undergraduate degree in electronic engineering (2017) and his M.Sc. degree in engineering industrial automation (2019) from the Universidad Nacional de Colombia. Currently, he is a PhD student at the same university. His research interests include machine learning, image processing, and bioengineering.
- Andres Alvarez-Meza received his undergraduate degree in electronic engineering (2009), his M.Sc. degree in engineering industrial automation (2011), and his Ph.D. in engineering—automatics (2015) from the Universidad Nacional de Colombia. Currently, he is a Professor in the Department of Electrical, Electronic, and Computation Engineering at the Universidad Nacional de Colombia – Manizales. His research interests include machine learning and signal processing.
- German Castellanos-Dominguez received his undergraduate degree in radiotechnical systems and his Ph.D. in processing devices and systems from the Moscow Technical University of communications and Informatics, in 1985 and 1990 respectively. Currently, he is a Professor in the Department of Electrical, Electronic, and Computation Engineering at the Universidad Nacional de Colombia, Manizales. In addition, he is Chairman of the GCPDS at the same university. His teaching and research interests include information and signal theory, digital signal processing, and bioengineering.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruffino, C.; Papaxanthis, C.; Lebon, F. Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neuroscience 2017, 341, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Machaen, Z.; Martin, L.; Rosales, J. Bio-inspired cognitive model of motor learning by imitation. Cogn. Syst. Res. 2021, 66, 134–149. [Google Scholar] [CrossRef]
- Yoo, P.; Oxley, T.; Hagan, M.; John, S.; Ronayne, S.; Rind, G.; Brinded, A.M.; Opie, N.; Moffat, B.; Wong, Y. Distinct Neural Correlates Underlie Inhibitory Mechanisms of Motor Inhibition and Motor Imagery Restraint. Front. Behav. Neurosci. 2020, 14, 77. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, M.; Iso, N.; Fujiwara, K.; Moriuchi, T.; Matsuda, D.; Mitsunaga, W.; Nakashima, A.; Higashi, T. Comparison of cerebral activation between motor execution and motor imagery of self-feeding activity. Neural Regen. Res. 2021, 16, 778–782. [Google Scholar] [CrossRef]
- Yang, H.; Hu, Z.; Imai, F.; Yang, Y.; Ogawa, K. Effects of neurofeedback on the activities of motor-related areas by using motor execution and imagery. Neurosci. Lett. 2021, 746, 135653. [Google Scholar] [CrossRef]
- Bencivenga, F.; Sulpizio, V.; Tullo, M.; Galati, G. Assessing the effective connectivity of premotor areas during real vs. imagined grasping: A DCM-PEB approach. NeuroImage 2021, 230, 117806. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Kashyap, R.; Abualait, T.; Chen, S.; Yoo, W.; Bashir, S. The Role of Primary Motor Cortex: More Than Movement Execution. J. Mot. Behav. 2021, 53, 258–274. [Google Scholar] [CrossRef]
- Aliakbaryhosseinabadi, S.; Lontis, R.; Farina, D.; Mrachacz-Kersting, N. Effect of motor learning with different complexities on EEG spectral distribution and performance improvement. Biomed. Signal Process. Control 2021, 66, 102447. [Google Scholar] [CrossRef]
- Tomassini, V.; Jbabdi, S.; Kincses, Z.; Bosnell, R.; Douaud, G.; Pozzilli, C.; Matthews, P.; Johansen, H. Structural and functional bases for individual differences in motor learning. Hum. Brain Mapp. 2011, 32, 494–508. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Baumert, M. Intra- and Inter-subject Variability in EEG-Based Sensorimotor Brain Computer Interface: A Review. Front. Comput. Neurosci. 2020, 13, 87. [Google Scholar] [CrossRef] [Green Version]
- Vidaurre, C.; Haufe, S.; Jorajuría, T.; Müller, K.; Nikulin, V. Sensorimotor functional connectivity: A neurophysiological factor related to BCI performance. Front. Neurosci. 2020, 14, 1278. [Google Scholar] [CrossRef]
- Chevallier, S.; Kalunga, E.; Barthélemy, Q.; Monacelli, E. Review of Riemannian Distances and Divergences, Applied to SSVEP-based BCI. Neuroinformatics 2021, 19, 93–106. [Google Scholar] [CrossRef]
- Camargo, J.; Martín, R.; Hornillo, S.; Zarzoso, V. L1-norm unsupervised Fukunaga-Koontz transform. Signal Process. 2021, 182, 107942. [Google Scholar] [CrossRef]
- Huang, S.; Chen, Y.; Wang, T.; Ma, T. Spectrum-Weighted Tensor Discriminant Analysis for Motor Imagery-Based BCI. IEEE Access 2020, 8, 93749–93759. [Google Scholar] [CrossRef]
- Kwon, O.; Lee, M.; Guan, C.; Lee, S. Subject-independent brain–computer interfaces based on deep convolutional neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 3839–3852. [Google Scholar] [CrossRef]
- Chen, C.; Chen, P.; Belkacem, A.N.; Lu, L.; Xu, R.; Tan, W.; Li, P.; Gao, Q.; Shin, D.; Wang, C.; et al. Neural activities classification of left and right finger gestures during motor execution and motor imagery. Brain Comput. Interfaces 2020, 1–11. [Google Scholar] [CrossRef]
- Islam, M.; Rastegarnia, A.; Sanei, S. Signal Artifacts and Techniques for Artifacts and Noise Removal. In Signal Processing Techniques for Computational Health Informatics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 23–79. [Google Scholar]
- Fu, R.; Han, M.; Tian, Y.; Shi, P. Improvement motor imagery EEG classification based on sparse common spatial pattern and regularized discriminant analysis. J. Neurosci. Methods 2020, 343, 108833. [Google Scholar] [CrossRef]
- Park, S.; Lee, D.; Lee, S. Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 26, 498–505. [Google Scholar] [CrossRef]
- Daly, I. Neural component analysis: A spatial filter for electroencephalogram analysis. J. Neurosci. Methods 2021, 348, 108987. [Google Scholar] [CrossRef]
- Zhang, R.; Li, F.; Zhang, T.; Yao, D.; Xu, P. Subject inefficiency phenomenon of motor imagery brain-computer interface: Influence factors and potential solutions. Brain Sci. Adv. 2020, 6, 224–241. [Google Scholar] [CrossRef]
- Maksimenko, V.; Lüttjohann, A.; Makarov, V.; Goremyko, M.; Koronovskii, A.; Nedaivozov, V.; Runnova, A.; van Luijtelaar, G.; Hramov, A.; Boccaletti, S. Macroscopic and microscopic spectral properties of brain networks during local and global synchronization. Phys. Rev. E 2017, 96, 012316. [Google Scholar] [CrossRef] [Green Version]
- Miladinović, A.; Ajčević, M.; Jarmolowska, J.; Marusic, U.; Colussi, M.; Silveri, G.; Battaglini, P.; Accardo, A. Effect of power feature covariance shift on BCI spatial-filtering techniques: A comparative study. Comput. Methods Programs Biomed. 2021, 198, 105808. [Google Scholar] [CrossRef]
- Congedo, M.; Barachant, A.; Koopaei, E. Fixed point algorithms for estimating power means of positive definite matrices. IEEE Trans. Signal Process. 2017, 65, 2211–2220. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Li, X.; Wang, Y.; Liu, B.; Shi, L.; Chen, M.; Zhang, L.; Hu, Y. Using brain network features to increase the classification accuracy of MI-BCI inefficiency subject. IEEE Access 2019, 7, 74490–74499. [Google Scholar] [CrossRef]
- Gu, L.; Yu, Z.; Ma, T.; Wang, H.; Li, Z.; Fan, H. EEG-based classification of lower limb motor imagery with brain network analysis. Neuroscience 2020, 436, 93–109. [Google Scholar] [CrossRef]
- Luo, Z.; Jin, R.; Shi, H.; Lu, X. Research on Recognition of Motor Imagination Based on Connectivity Features of Brain Functional Network. Neural Plast. 2021, 2021, 6655430. [Google Scholar] [CrossRef]
- Pillette, L.; Roc, A.; N’kaoua, B.; Lotte, F. Experimenters Influence on Mental-Imagery based Brain-Computer Interface User Training. Int. J. Hum. Comput. Stud. 2021, 149, 102603. [Google Scholar] [CrossRef]
- Wang, H.; Xu, T.; Tang, C.; Yue, H.; Chen, C.; Xu, L.; Pei, Z.; Dong, J.; Bezerianos, A.; Li, J. Diverse feature blend based on filter-bank common spatial pattern and brain functional connectivity for multiple motor imagery detection. IEEE Access 2020, 8, 155590–155601. [Google Scholar] [CrossRef]
- Rodrigues, P.; Stefano, C.; Attux, R.; Castellano, G.; Soriano, D. Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces. Med. Biol. Eng. Comput. 2019, 57, 1709–1725. [Google Scholar] [CrossRef]
- Kim, D.; Jeong, W.; Kim, J.S.; Chung, C.K. Single-Trial EEG Connectivity of Default Mode Network Before and During Encoding Predicts Subsequent Memory Outcome. Front. Syst. Neurosci. 2020, 14, 591675. [Google Scholar] [CrossRef]
- Georgiadis, K.; Laskaris, N.; Nikolopoulos, S.; Kompatsiaris, I. Exploiting the heightened phase synchrony in patients with neuromuscular disease for the establishment of efficient motor imagery BCIs. J. Neuroeng. Rehabil. 2018, 15, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L. The generalization of the wiener-khinchin theorem. In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181). Seattle, WA, USA, 15 May 1998; Volume 3, pp. 1577–1580. [Google Scholar]
- Wackernagel, H. Multivariate Geostatistics: An Introduction with Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Bishop, C. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Álvarez-Meza, A.; Cárdenas-Peña, D.; Castellanos-Dominguez, G. Unsupervised kernel function building using maximization of information potential variability. In Proceedings of the Iberoamerican Congress on Pattern Recognition, Puerto Vallarta, Mexico, 2–5 November 2014; Springer: Berlin/Heidelberg, 2014; pp. 335–342. [Google Scholar]
- Velasquez-Martinez, L.F.; Zapata-Castano, F.; Castellanos-Dominguez, G. Dynamic Modeling of Common Brain Neural Activity in Motor Imagery Tasks. Front. Neurosci. 2020, 14, 714. [Google Scholar] [CrossRef] [PubMed]
- Barachant, A.; Bonnet, S.; Congedo, M.; Jutten, C. Classification of covariance matrices using a Riemannian-based kernel for BCI applications. Neurocomputing 2013, 112, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media: Newton, MA, USA, 2019; Chapter 4; pp. 134–141. [Google Scholar]
- Haddad, A.; Shamsi, F.; Ghovanloo, M.; Najafizadeh, L. Early decoding of tongue-hand movement from EEG recordings using dynamic functional connectivity graphs. In Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019; pp. 373–376. [Google Scholar]
- Kumar, S.; Reddy, T.; Behera, L. EEG based motor imagery classification using instantaneous phase difference sequence. In Proceedings of the 2018 IEEE International Conference on Systems, Man and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 499–504. [Google Scholar]
- Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F. A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update. J. Neural Eng. 2018, 15, 031005. [Google Scholar] [CrossRef] [Green Version]
- Schirrmeister, R.; Springenberg, J.; Fiederer, L.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 2017, 38, 5391–5420. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Oniga, S. A Review of Processing Methods and Classification Algorithm for EEG Signal. Carpathian J. Electron. Comput. Eng. 2020, 12, 23–29. [Google Scholar] [CrossRef]
- Al-Saegh, A.; Dawwd, S.A.; Abdul-Jabbar, J.M. Deep learning for motor imagery EEG-based classification: A review. Biomed. Signal Process. Control 2021, 63, 102172. [Google Scholar] [CrossRef]
- Borra, D.; Fantozzi, S.; Magosso, E. Interpretable and lightweight convolutional neural network for EEG decoding: Application to movement execution and imagination. Neural Netw. 2020, 129, 55–74. [Google Scholar] [CrossRef]
- Dai, H.; Su, S.; Zhang, Y.; Jian, W. Effect of Spatial Filtering and Channel Selection on Motor Imagery BCI. In Proceedings of the 2020 Conference on Artificial Intelligence and Healthcare, Taiyuan, China, 23–25 October 2020; pp. 270–274. [Google Scholar]
- Shamsi, F.; Haddad, A.; Najafizadeh, L. Early classification of motor tasks using dynamic functional connectivity graphs from EEG. J. Neural Eng. 2021, 18, 016015. [Google Scholar] [CrossRef]
- Sannelli, C.; Vidaurre, C.; Müller, K.; Blankertz, B. A large scale screening study with a SMR-based BCI: Categorization of BCI users and differences in their SMR activity. PLoS ONE 2019, 14, e0207351. [Google Scholar] [CrossRef] [Green Version]
- Georgiadis, K.; Laskaris, N.; Nikolopoulos, S.; Kompatsiaris, I. Connectivity steered graph Fourier transform for motor imagery BCI decoding. J. Neural Eng. 2019, 16, 056021. [Google Scholar] [CrossRef]
- Linderman, G.; Steinerberger, S. Clustering with t-SNE, provably. SIAM J. Math. Data Sci. 2019, 1, 313–332. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Lee, S.; Kim, H.; Lee, S.; Lee, S.; Kim, D. Reduced Burden of Individual Calibration Process in Brain-Computer Interface by Clustering the Subjects based on Brain Activation. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 2139–2143. [Google Scholar]
- Gaur, P.; Gupta, H.; Chowdhury, A.; McCreadie, K.; Pachori, R.; Wang, H. A Sliding Window Common Spatial Pattern for Enhancing Motor Imagery Classification in EEG-BCI. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Zhang, Y.; Nam, C.; Zhou, G.; Jin, J.; Wang, X.; Cichocki, A. Temporally constrained sparse group spatial patterns for motor imagery BCI. IEEE Trans. Cybern. 2018, 49, 3322–3332. [Google Scholar] [CrossRef]
- De La Pava Panche, I.; Alvarez-Meza, A.; Orozco-Gutierrez, A. A data-driven measure of effective connectivity based on Renyi’s α-entropy. Front. Neurosci. 2019, 13, 1277. [Google Scholar] [CrossRef]
- Cho, H.; Ahn, M.; Ahn, S.; Kwon, M.; Jun, S. EEG datasets for motor imagery brain–computer interface. GigaScience 2017, 6, gix034. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, A.; Tsunoda, T. Brain wave classification using long short-term memory network based OPTICAL predictor. Sci. Rep. 2019, 9, 9153. [Google Scholar] [CrossRef] [Green Version]
- Brockmeier, A.; Choi, J.; Kriminger, E.; Francis, J.; Principe, J. Neural decoding with kernel-based metric learning. Neural Comput. 2014, 26, 1080–1107. [Google Scholar] [CrossRef]
- Alvarez-Meza, A.; Orozco-Gutierrez, A.; Castellanos-Dominguez, G. Kernel-based relevance analysis with enhanced interpretability for detection of brain activity patterns. Front. Neurosci. 2017, 11, 550. [Google Scholar] [CrossRef]
- Uribe, L.; Stefano, C.; de Oliveira, V.; da Silva, T.; Rodrigues, P.; Soriano, D.; Boccato, L.; Castellano, G.; Attux, R. A correntropy-based classifier for motor imagery brain-computer interfaces. Biomed. Phys. Eng. Express 2019, 5, 065026. [Google Scholar] [CrossRef]
- Bakhshali, M.; Khademi, M.; Ebrahimi, A.; Moghimi, S. EEG signal classification of imagined speech based on Riemannian distance of correntropy spectral density. Biomed. Signal Process. Control 2020, 59, 101899. [Google Scholar] [CrossRef]
Data | Time Window | Filter Band | Interpretation | Feature Extraction | Accuracy (%) |
---|---|---|---|---|---|
DBI-MI | ✓ | ✓ | ✓ | TSGSP [54] | 82.50 ± 12.2 |
- | - | ✓ | STR connectivity [30] | 69.56 ± 15.02 | |
✓ | - | ✓ | Renyi’s -entropy [55] | 72.40 ± 6.50 | |
✓ | ✓ | ✓ | Proposed GFC | 81.92 ± 9.44 | |
DBIII-MI | - | ✓ | ✓ | CSP [56] | 67.60 ± 13.17 |
✓ | ✓ | - | OPTICAL [57] | 68.19 ± 9.36 | |
- | - | ✓ | STR connectivity [30] | 62.00 ± 13.00 | |
✓ | ✓ | ✓ | Proposed GFC | 74.12 ± 12.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Murillo, D.G.; Alvarez-Meza, A.; Castellanos-Dominguez, G. Single-Trial Kernel-Based Functional Connectivity for Enhanced Feature Extraction in Motor-Related Tasks. Sensors 2021, 21, 2750. https://doi.org/10.3390/s21082750
García-Murillo DG, Alvarez-Meza A, Castellanos-Dominguez G. Single-Trial Kernel-Based Functional Connectivity for Enhanced Feature Extraction in Motor-Related Tasks. Sensors. 2021; 21(8):2750. https://doi.org/10.3390/s21082750
Chicago/Turabian StyleGarcía-Murillo, Daniel Guillermo, Andres Alvarez-Meza, and German Castellanos-Dominguez. 2021. "Single-Trial Kernel-Based Functional Connectivity for Enhanced Feature Extraction in Motor-Related Tasks" Sensors 21, no. 8: 2750. https://doi.org/10.3390/s21082750
APA StyleGarcía-Murillo, D. G., Alvarez-Meza, A., & Castellanos-Dominguez, G. (2021). Single-Trial Kernel-Based Functional Connectivity for Enhanced Feature Extraction in Motor-Related Tasks. Sensors, 21(8), 2750. https://doi.org/10.3390/s21082750