Ultrasonic Guided-Waves Sensors and Integrated Structural Health Monitoring Systems for Impact Detection and Localization: A Review
Abstract
:1. Introduction
- (1)
- modelling of damage physical phenomena and their influence on the physical sensed quantities,
- (2)
- sensors, including calibration and self-diagnostics,
- (3)
- front-end electronics including embedded processing,
- (4)
- data transmission (wired, wireless),
- (5)
- online (or real time) or offline signal/image processing,
- (6)
- impact event detection and localization
- (7)
- damage detection and classification techniques that are based on database processing,
- (8)
- prognostics,
- (9)
- artificial intelligence (AI)/machine learning (ML) for automatic damage detection and progression evaluation.
2. Characteristics of Signals Generated by Impacts on Planar Structures Relevant to the Design of SHM Systems
2.1. Dispersion and Attenuation of Lamb Waves
2.2. Ultrasonic Guided Waves Generated by Different Velocity of Impacts on Isotropic Elastic Plates
2.3. Signal Processing Techniques for Dispersion and Environmental Factors Compensation
2.4. Advanced Methods for Impact Detection and Localization
- (1)
- the early part of the signal consists of the fast phase velocity modes, typically the S0 mode in the low frequency range below the cut off frequency × thickness product (e.g., equal to 1.5 MHz × mm in Figure 2).
- (2)
- in the later part of the signal the contribution comes from slower modes that show also dispersion effect as for the A0 mode [53] or signals that travelled along longer paths or multiple reflections.
3. Sensors and Transducers for Impact Monitoring
3.1. Single Element Piezoelectric Sensors for Impact Detection and Emerging/New Sensing Materials
- bandwidth;
- sensitivity/Gain/signal to noise ratio (SNR);
- input Impedance;
- input signal dynamic;
- temperature range;
- mechanical features: Stress/Strain/Brittleness/Flexible/Stretchable;
- bonding/Embedding;
- electrical connection/wiring; and,
- cost.
3.2. Multifunctional Sensors Based on Piezopolymer Film Material
3.3. Comparison of Piezoelectric PVDF and PZT Sensors Sensitivity for Impact Detection
3.4. Operating Temperature Range Estimation of Piezopolymer Sensors
- Inserting the sample into the steel tube housing (see Figure 8 left).
- Immersion of the sample in the cryogenic chamber remaining above the liquid nitrogen level.
- Time to reach the desired temperature (from 20 to 40 min).
- Test duration time 20 min.
- Sample recovery time up to room temperature 15–30 min.
- Test the sample on reference aluminum laminate supplied by TAS-I (see Figure 8, right), using sample IDT #1 as transmitter and IDT #2 as receiver.
- Setting of the desired temperature by remote programming of the air conditioning system with Peltier cell.
- Wait for the time to reach the desired temperature equal to 15 min.
- Test duration time 20 min.
- The acquisition of the signal on the IDT # 1 sensor, using the IDT # 2 as transmitter.
3.5. Advanced Technologies for Piezoelectric Sensors in SHM Systems
- embedded sensors with the structure,
- Lamb wave mode selection, and
- array configuration.
3.5.1. Sensors Embedding
3.5.2. Lamb Wave Mode Selection
3.5.3. Array Configuration
4. Influence of Front-End Electronics on Impact Detection and Localization
4.1. Programmable Single Channel Front-End Electronics for Signal Conditioning
- (1)
- A low noise amplifier (LNA) with a fixed open loop voltage gain (typically 10 dB) and programmable feed-back impedance to match the sensor impedance bandwidth equal or larger than the sensor (e.g., 50 kHz–1 MHz). For example, we can assume a Noise Figure (NF) better than 5 dB and input equivalent noise density 0.6 nV/√Hz.
- (2)
- A programmable Variable Gain Amplifier (VGA) for adjusting the signal amplitude to the input voltage rail of the ADC (e.g., selectable gain −10 dB, +30 dB).
- (3)
- A passive anti-aliasing filter (AAF) with an attenuation rate depending on the filter order (typically 6 dB) and a cut-off frequency fcut-off equal to the higher spectral component of the input signal.
- (4)
- An ADC with sampling frequency Fs selected according to Nyquist criterion and more than 5–20 times the fcut-off. The ADC should be selected with a low equivalent noise floor.
4.2. Real Time Electronics for Impact Monitoring
4.3. MEMS Sensors, CMUT, PMUT, and Integration with Electronics
5. Hardware Developments of Wired and Wireless Sensor Networks (WSNs) for SHM and Validation Tests
5.1. Nodes and Modules with Low Power Electronics Solutions with Energy Harvesting
5.2. Toward SHM Sensor Networks with Smart Nodes
5.3. WSN and IoT for SHM
- Sensing and data Acquisition Subsystem.
- Data Management Subsystem: preprocessing methods used to organize raw data that were acquired from sensors and remove the noise before processing; novelty detection, classification, and regression approaches. Among them, novelty detection based on artificial neural networks.
- Data Access and Retrieval Subsystem.
6. Artificial Intelligence and Machine Learning
7. Conclusions
- Piezoelectric sensors and transducers: the piezo-MEMS are gaining a share of the market with respect to bulk devices that are holding the big share. The compound annual growth rate (CAGR) for the period 2018–2024 of piezo-MEMS is 15.3%, while, for bulk MEMS, is 12.3%. From this outlook, the devices will be smaller and cheaper, and with lower power consumption
- System on Chip: the integration of the mixed signal electronics in a single package will benefit of the technological developments of SoCs for automotive and consumer markets with CAGR of 8.4% in the period 2017–2025. The electronics that are realized in a compact scale with single package will be a crucial advantage for the connection in proximity of the sensor/s with multifunctional capabilities for environmental monitoring.
- Energy Harvesting devices: the global market CAGR for the period 2020–2025 is estimated at 8.4%, and this is a key factor for installing self-powered sensors in installations where the power cable infrastructure is expensive.
- Wireless Sensor Networks: the CAGR for WSN is industry in the period 2017–2025 is 10.7%. This growth is certainly supported by IOT for Industry 4.0, and the main advantages rely on low-power communications with a data transfer rate compatible with the application to SHM. The programmable configuration of the sensor network is one of the main advantages, especially in applications where a different number of sensors and their position can be optimized during service.
- Artificial Intelligence Processors: as sensors nodes of SHM plants increase to reach hundreds or thousands of units, the data processing becomes difficult without the support of AI. The electronic market forecast reports a tremendous CAGR for AI application processors of 46% in the period of 2017–2023.
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Abbreviations
Acronym | |
AAF | Anti Aliasing Filter |
ADC | Analog to Digital Converter |
AFE | Analog Front-End |
AI | Artificial Intelligence |
AIC | Akaike Information Criterion |
AlN | Aluminum Nitride |
ANN | Artificial Neural Network |
ASCS | Aircraft Smart Composite Skin |
ASIC | Application Specific Integrated Circuit |
BD | Big Data |
BSS | Bioinspired Stretchable Sensors |
CAN | Controller Area Network |
CFRP | Composite Fiber Reinforce Polymer |
CMRR | Common Mode Rejection Ratio |
CMUT | Capacitive Micromachined Ultrasonic Transducer |
CNN | Convolutanional Neural Network |
CNT | Carbon Nanotubes |
COPV | Composite Overwrapped Pressure Vessel |
COTS | Component Of The Shelf |
CWT | Continuous Wavelet Transform |
DSP | Digital Signal Processor |
DToA | Differential Time of Arrival |
EMI | Electro-Mechanical Impedance |
FBG | Fiber Bragg Grating |
FPGA | Field Programmable Gate Array |
FUT | Flexible Ultrasonic Transducers |
GFRP | Glass Fiber Reinforced Polymer |
IDT | Interdigital Transducer |
INA | Instrumentation Amplifier |
IoT | Internet of Things |
ISHM | Integrated Structural Health Monitoring |
LNA | Low Noise Amplifier |
MEMS | Micro Electrical Mechanical System |
MFC | Macro Fiber Composite |
ML | Machine Learning |
NDI | Non Destructive Inspection |
NDT | Non Destructive Testing |
NF | Noise Figure |
PLC | Power Line Communication |
PMUT | Piezoelectric Micromachined Ultrasonic Transducers |
PTP | Precise Time Protocol |
PVDF | Polyvinylidene fluoride |
PVDF–TrFE | Polyvinyledenedifluoride–trifluoroethylene copolymer |
PZT | Lead zirconate titanate |
PWAS | Piezoelectric Wafer Active Sensors |
ROI | Region Of Interest |
RPL | Routing protocols for low-power networks |
RTD | Resistive Temperature Device |
SH | Shear Horizontal |
SHM | Structural Health Monitoring |
SiC | Silicon Carbide |
SL | SMART Layer® |
SS | Smart-Skin |
SLDV | Scanning Laser Doppler Vibrometer |
SNR | Signal to Noise Ratio |
SOC | System on Chip |
STFT | Short Time Fourier Transform |
TOF | Time Of Flight |
UGM | Ultrasonic Guided Mode |
UGW | Ultrasonic Guided Wave |
VGA | Variable Gain Amplifier |
WSN | Wireless Sensor Network |
References
- Rose, J.L. Ultrasonic Guided Waves in Solid Media; Cambridge University Press: New York, NY, USA, 2014; ISBN 978-1-107-27361-0. [Google Scholar]
- Auld, B.A. Acoustic Fields and Waves in Solids; Wiley: New York, NY, USA, 1973; ISBN 978-0-471-03702-6. [Google Scholar]
- Farrar, C.R.; Worden, K. An Introduction to Structural Health Monitoring. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2007, 365, 303–315. [Google Scholar] [CrossRef]
- Farrar, C.R.; Worden, K. An Introduction to Structural Health Monitoring. In New Trends in Vibration Based Structural Health Monitoring; Deraemaeker, A., Worden, K., Eds.; CISM International Centre for Mechanical Sciences; Springer: Vienna, Austria, 2010; Volume 520, pp. 1–17. ISBN 978-3-7091-0398-2. [Google Scholar]
- Farrar, C.R.; Worden, K. Structural Health Monitoring: A Machine Learning Perspective; John Wiley & Sons, Ltd.: Chichester, UK, 2012; ISBN 978-1-118-44311-8. [Google Scholar]
- Mitra, M.; Gopalakrishnan, S. Guided Wave Based Structural Health Monitoring: A Review. Smart Mater. Struct. 2016, 25, 053001. [Google Scholar] [CrossRef]
- Giurgiutiu, V. Structural Health Monitoring with Piezoelectric Wafer Active Sensors, 2nd ed.; Academic Press, an Imprint of Elsevier: Amsterdam, The Netherlands, 2014; ISBN 978-0-12-418691-0. [Google Scholar]
- Zhou, G.; Sim, L.M. Damage Detection and Assessment in Fibre-Reinforced Composite Structures with Embedded Fibre Optic Sensors-Review. Smart Mater. Struct. 2002, 11, 925–939. [Google Scholar] [CrossRef]
- Kirkby, E.; de Oliveira, R.; Michaud, V.; Månson, J.A. Impact Localisation with FBG for a Self-Healing Carbon Fibre Composite Structure. Compos. Struct. 2011, 94, 8–14. [Google Scholar] [CrossRef]
- Shin, C.S.; Chen, B.L. An Impact Source Locating System Using Fiber Bragg Grating Rosette Array. In Proceedings of the Third International Conference on Smart Materials and Nanotechnology in Engineering, Shenzhen, China, 2 April 2012; p. 84091B. [Google Scholar]
- Yeager, M.; Whittaker, A.; Todd, M.; Kim, H.; Key, C.; Gregory, W. Impact Detection and Characterization in Composite Laminates with Embedded Fiber Bragg Gratings. Procedia Eng. 2017, 188, 156–162. [Google Scholar] [CrossRef]
- Datta, A.; Augustin, M.J.; Gupta, N.; Viswamurthy, S.R.; Gaddikeri, K.M.; Sundaram, R. Impact Localization and Severity Estimation on Composite Structure Using Fiber Bragg Grating Sensors by Least Square Support Vector Regression. IEEE Sens. J. 2019, 19, 4463–4470. [Google Scholar] [CrossRef]
- Roach, D.P. FAA Research Program Webinar Series on Structural Health Monitoring—Module 1: Introduction to SHM and Implementation. 2016. Available online: https://www.osti.gov/servlets/purl/1514661 (accessed on 20 April 2021).
- Shen, G.; Zhang, J.; Lackner, G. International Acoustic Emission Standard Analysis and Development Outlook. Insight Non-Destr. Test. Cond. Monit. 2020, 62, 724–734. [Google Scholar] [CrossRef]
- Staszewski, W.J.; Boller, C.; Tomlinson, G.R. Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing; Staszewski, W.J., Boller, C., Tomlinson, G.R., Eds.; Wiley: Hoboken, NJ, USA; West Sussex, UK, 2004; ISBN 978-0-470-84340-6. [Google Scholar]
- Staszewski, W.J. Structural Health Monitoring Using Guided Ultrasonic Waves. In Advances in Smart Technologies in Structural Engineering; Computational Methods in Applied Sciences; Holnicki-Szulc, J., Soares, C.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 1, pp. 117–162. ISBN 978-3-642-06104-2. [Google Scholar]
- Wilcox, P. Application of Guided Wave Signal Processing to Acoustic Emission Data. In AIP Conference Proceedings; AIP: Golden, CO, USA, 2005; Volume 760, pp. 1809–1816. [Google Scholar]
- Giurgiutiu, V. Structural Health Monitoring with Piezoelectric Wafer Active Sensors, 1st ed.; Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2008; ISBN 978-0-12-088760-6. [Google Scholar]
- Ultrasonic Guided Waves; Lissenden, C.J. (Ed.) MDPI: Basel, Switzerland, 2020; ISBN 978-3-03928-299-9. [Google Scholar]
- Ono, K. Review on Structural Health Evaluation with Acoustic Emission. Appl. Sci. 2018, 8, 958. [Google Scholar] [CrossRef] [Green Version]
- Rose, J. Ultrasonic Guided Waves in Structural Health Monitoring. Key Eng. Mater. 2004, 270–273, 14–21. [Google Scholar] [CrossRef]
- Mallardo, V.; Aliabadi, M.H. Optimal Sensor Placement for Structural, Damage and Impact Identification: A Review. SDHM Struct. Durab. Health Monit. 2013, 9, 287–323. [Google Scholar] [CrossRef]
- Safri, S.; Sultan, M.T.H.; Yidris, N.; Mustapha, F. Low Velocity and High Velocity Impact Test on Composite Materials—A Review. Int. J. Eng. Sci. 2014, 3, 50–60. [Google Scholar]
- Ross, R. Structural Health Monitoring and Impact Detection Using Neural Networks for Damage Characterization. In Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials, Newport, RI, USA, 1–4 May 2006; Volume 9. [Google Scholar]
- Tobias, A. Acoustic-Emission Source Location in Two Dimensions by an Array of Three Sensors. Non-Destr. Test. 1976, 9, 9–12. [Google Scholar] [CrossRef]
- Ziola, S.M.; Gorman, M.R. Source Location in Thin Plates Using Cross-correlation. J. Acoust. Soc. Am. 1991, 90, 2551–2556. [Google Scholar] [CrossRef]
- Marino-Merlo, E.; Bulletti, A.; Giannelli, P.; Calzolai, M.; Capineri, L. Analysis of Errors in the Estimation of Impact Positions in Plate-Like Structure through the Triangulation Formula by Piezoelectric Sensors Monitoring. Sensors 2018, 18, 3426. [Google Scholar] [CrossRef] [Green Version]
- Gorman, M.R.; Humes, D.H.; June, R.; Prosser, W.H.; Prosser, W.H. Acoustic Emission Signals in Thin Plates Produced by Impact Damage. J. Acoust. Emiss. 1999, 17, 29–36. [Google Scholar]
- Yang, J.C.S.; Chun, D.S. Application of the Hertz Contact Law to Problems of Impact in Plates; Defense Technical Information Center: Fort Belvoir, WV, USA, 1969. [Google Scholar]
- Richardson, M. Measurement and Analysis of the Dynamics of Mechanical Structures. J. Acoust. Soc. Am. 1979, 65, S77. [Google Scholar] [CrossRef]
- Staszewski, W.J.; Mahzan, S.; Traynor, R. Health Monitoring of Aerospace Composite Structures—Active and Passive Approach. Compos. Sci. Technol. 2009, 69, 1678–1685. [Google Scholar] [CrossRef]
- Lamb, H. On Waves in an Elastic Plate. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 1917, 93, 114–128. [Google Scholar] [CrossRef] [Green Version]
- Bulletti, A.; Merlo, E.M.; Capineri, L. Analysis of the Accuracy in Impact Localization Using Piezoelectric Sensors for Structural Health Monitoring with Multichannel Real-Time Electronics. In Proceedings of the 2020 IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Virtual Conference, Pisa, Italy, 22–24 June 2020; pp. 480–484. [Google Scholar]
- Chandrasekaran, S. Structural Health Monitoring with Application to Offshore Structures; World Scientific: Singapore, 2019; ISBN 9789811201080. [Google Scholar]
- Miniaci, M.; Mazzotti, M.; Radzieński, M.; Kudela, P.; Kherraz, N.; Bosia, F.; Pugno, N.M.; Ostachowicz, W. Application of a Laser-Based Time Reversal Algorithm for Impact Localization in a Stiffened Aluminum Plate. Front. Mater. 2019, 6, 30. [Google Scholar] [CrossRef]
- Nicassio, F.; Carrino, S.; Scarselli, G. Non-Linear Lamb Waves for Locating Defects in Single-Lap Joints. Front. Built Environ. 2020, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Mevissen, F.; Meo, M. A Nonlinear Ultrasonic Modulation Method for Crack Detection in Turbine Blades. Aerospace 2020, 7, 72. [Google Scholar] [CrossRef]
- Fink, M. Time Reversal Mirrors. In Acoustical Imaging; Jones, J.P., Ed.; Acoustical Imaging; Springer: Boston, MA, USA, 1995; Volume 21, pp. 1–15. ISBN 978-1-4613-5797-1. [Google Scholar]
- Zeng, L.; Lin, J.; Huang, L. A Modified Lamb Wave Time-Reversal Method for Health Monitoring of Composite Structures. Sensors 2017, 17, 955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilcox, P.; Lowe, M.J.S.; Cawley, P. Effect of Dispersion on Long-Range Inspection Using Ultrasonic Guided Waves. NDT E Int. 2001, 34, 1–9. [Google Scholar] [CrossRef]
- Sanderson, R. A Closed Form Solution Method for Rapid Calculation of Guided Wave Dispersion Curves for Pipes. Wave Motion 2015, 53, 40–50. [Google Scholar] [CrossRef]
- Zhong, Y.; Xiang, J.; Gao, H.; Zhou, Y. Impact Energy Level Assessment of Composite Structures Using MUSIC-ANN Approach: MUSIC-ANN Approach-Based Impact Monitoring for Composite Structures. Struct. Control Health Monit. 2016, 23, 825–837. [Google Scholar] [CrossRef]
- Engholm, M.; Stepinski, T. Direction of Arrival Estimation of Lamb Waves Using Circular Arrays. Struct. Health Monit. 2011, 10, 467–480. [Google Scholar] [CrossRef]
- Zhong, Y.; Xiang, J.; Chen, X.; Jiang, Y.; Pang, J. Multiple Signal Classification-Based Impact Localization in Composite Structures Using Optimized Ensemble Empirical Mode Decomposition. Appl. Sci. 2018, 8, 1447. [Google Scholar] [CrossRef] [Green Version]
- Mariani, S.; Liu, Y.; Cawley, P. Improving Sensitivity and Coverage of Structural Health Monitoring Using Bulk Ultrasonic Waves. Struct. Health Monit. 2020, 147592172096512. [Google Scholar] [CrossRef]
- Mariani, S.; Heinlein, S.; Cawley, P. Location Specific Temperature Compensation of Guided Wave Signals in Structural Health Monitoring. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 146–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sepehry, N.; Shamshirsaz, M.; Abdollahi, F. Temperature Variation Effect Compensation in Impedance-Based Structural Health Monitoring Using Neural Networks. J. Intell. Mater. Syst. Struct. 2011, 22, 1975–1982. [Google Scholar] [CrossRef]
- Qing, X.; Li, W.; Wang, Y.; Sun, H. Piezoelectric Transducer-Based Structural Health Monitoring for Aircraft Applications. Sensors 2019, 19, 545. [Google Scholar] [CrossRef] [PubMed]
- De Simone, M.E.; Ciampa, F.; Boccardi, S.; Meo, M. Impact Source Localisation in Aerospace Composite Structures. Smart Mater. Struct. 2017, 26, 125026. [Google Scholar] [CrossRef] [Green Version]
- Seno, A.H.; Aliabadi, M.F. Impact Localisation in Composite Plates of Different Stiffness Impactors under Simulated Environmental and Operational Conditions. Sensors 2019, 19, 3659. [Google Scholar] [CrossRef] [Green Version]
- Kundu, T.; Das, S.; Jata, K.V. Point of Impact Prediction in Isotropic and Anisotropic Plates from the Acoustic Emission Data. J. Acoust. Soc. Am. 2007, 122, 2057–2066. [Google Scholar] [CrossRef]
- Hakoda, C.; Lissenden, C. Using the Partial Wave Method for Wave Structure Calculation and the Conceptual Interpretation of Elastodynamic Guided Waves. Appl. Sci. 2018, 8, 966. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, M.; Büter, A.; Frankenstein, B.; Schubert, F.; Brunner, B. Monitoring System for Delamination Detection—Qualification of Structural Health Monitoring (SHM) Systems. In Proceedings of the Conference on Damage in Composite Material CDCM, Stuttgart, Germany, 18–19 September 2006. [Google Scholar]
- Scheerer, M.; Lager, D. Development and Testing of a Hybride Active—Passive Acoustic Shm System for Impact Damage Detection in Honeycomb Aircraft Structures. In Proceedings of the 19th ICCM, Montreal, QC, Canada, 28 July–2 August 2013. [Google Scholar]
- Ebrahimkhanlou, A.; Salamone, S. Acoustic Emission Source Localization in Thin Metallic Plates: A Single-Sensor Approach Based on Multimodal Edge Reflections. Ultrasonics 2017, 78, 134–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, W.H.; Packo, P.; Kundu, T. Acoustic Source Localization in an Anisotropic Plate without Knowing Its Material Properties—A New Approach. Ultrasonics 2017, 79, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Ren, B.; Lissenden, C.J. PVDF Multielement Lamb Wave Sensor for Structural Health Monitoring. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 178–185. [Google Scholar] [CrossRef]
- Altammar, H.; Dhingra, A.; Salowitz, N. Ultrasonic Sensing and Actuation in Laminate Structures Using Bondline-Embedded D35 Piezoelectric Sensors. Sensors 2018, 18, 3885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciampa, F.; Meo, M. A New Algorithm for Acoustic Emission Localization and Flexural Group Velocity Determination in Anisotropic Structures. Compos. Part Appl. Sci. Manuf. 2010, 41, 1777–1786. [Google Scholar] [CrossRef]
- Kundu, T. Acoustic Source Localization. Ultrasonics 2014, 54, 25–38. [Google Scholar] [CrossRef]
- Marchi, L.D.; Marzani, A.; Speciale, N.; Viola, E. A Passive Monitoring Technique Based on Dispersion Compensation to Locate Impacts in Plate-like Structures. Smart Mater. Struct. 2011, 20, 035021. [Google Scholar] [CrossRef]
- Si, L.; Baier, H. Real-Time Impact Visualization Inspection of Aerospace Composite Structures with Distributed Sensors. Sensors 2015, 15, 16536–16556. [Google Scholar] [CrossRef] [Green Version]
- Scholey, J.; Wilcox, P.; Wisnom, M.; Friswell, M.; Pavier, M.J.; Aliha, M.R.M. A Generic Technique for Acoustic Emission Source Location. J Acoust. Emis. 2009, 27, 291–298. [Google Scholar]
- Morón, C.; Portilla, M.; Somolinos, J.; Morales, R. Low-Cost Impact Detection and Location for Automated Inspections of 3D Metallic Based Structures. Sensors 2015, 15, 12651–12667. [Google Scholar] [CrossRef] [Green Version]
- Nucera, C.; White, S.; Chen, Z.M.; Kim, H.; Lanza di Scalea, F. Impact Monitoring in Stiffened Composite Aerospace Panels by Wave Propagation. Struct. Health Monit. Int. J. 2015, 14, 547–557. [Google Scholar] [CrossRef]
- Monkhouse, R.S.C.; Wilcox, P.W.; Lowe, M.J.S.; Dalton, R.P.; Cawley, P. The Rapid Monitoring of Structures Using Interdigital Lamb Wave Transducers. Smart Mater. Struct. 2000, 9, 304–309. [Google Scholar] [CrossRef]
- Mujica, L.; Rodellar, J.; Vehí, J. A Review of Impact Damage Detection in Structures Using Strain Data. Int. J. COMADEM 2010, 13, 3–18. [Google Scholar]
- Izfp, C.C.; Wu, K.; Sun, Z.; Mrad, N. A Comparative Study on Two Families of Integratable Ultrasound Transducers for Structural Health Monitoring. In Proceedings of the International Workshop on Smart Materials & Structures and NDT in Aerospace, Montreal, QC, Canada, 2–4 November 2011. [Google Scholar]
- Bulletti, A.; Giannelli, P.; Calzolai, M.; Capineri, L. An Integrated Acousto/Ultrasonic Structural Health Monitoring System for Composite Pressure Vessels. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 864–873. [Google Scholar] [CrossRef]
- Stepinski, T.; Mańka, M.; Martowicz, A. Interdigital Lamb Wave Transducers for Applications in Structural Health Monitoring. NDT E Int. 2017, 86, 199–210. [Google Scholar] [CrossRef]
- Gardiner, G. Available online: https://www.Compositesworld.Com/Articles/Structural-Health-Monitoring-Ndt-Integrated-Aerostructures-Enter-Service (accessed on 1 July 2015).
- Qi, B.; Kong, Q.; Qian, H.; Patil, D.; Lim, I.; Li, M.; Liu, D.; Song, G. Study of Impact Damage in PVA-ECC Beam under Low-Velocity Impact Loading Using Piezoceramic Transducers and PVDF Thin-Film Transducers. Sensors 2018, 18, 671. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Chen, X.; Ni, Q.; Li, L.; Ju, C. Dependence of the Impact Response of Polyvinylidene Fluoride Sensors on Their Supporting Materials’ Elasticity. Sensors 2013, 13, 8669–8678. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Li, D.; Zhao, C.; Wang, X.; Li, J.; Wu, X. Highly Sensitive Impact Sensor Based on PVDF-TrFE/Nano-ZnO Composite Thin Film. Sensors 2019, 19, 830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capsal, J.-F.; David, C.; Dantras, E.; Lacabanne, C. Piezoelectric Sensing Coating for Real Time Impact Detection and Location on Aircraft Structures. Smart Mater. Struct. 2012, 21, 055021. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.; Park, Y.; Shin, C.; Kim, J.-H.; Kim, C.-G. Embedded Silicon Carbide Fiber Sensor Network Based Low-Velocity Impact Localization of Composite Structures. Smart Mater. Struct. 2020, 29, 055030. [Google Scholar] [CrossRef]
- Aly, K.; Bradford, P.D. Real-Time Impact Damage Sensing and Localization in Composites through Embedded Aligned Carbon Nanotube Sheets. Compos. Part B Eng. 2019, 162, 522–531. [Google Scholar] [CrossRef]
- Bellan, F.; Bulletti, A.; Capineri, L.; Masotti, L.; Yaralioglu, G.G.; Degertekin, F.L.; Khuri-Yakub, B.T.; Guasti, F.; Rosi, E. A New Design and Manufacturing Process for Embedded Lamb Waves Interdigital Transducers Based on Piezopolymer Film. Sens. Actuators A Phys. 2005, 123–124, 379–387. [Google Scholar] [CrossRef]
- Ghoshal, A.; Prosser, W.H.; Kim, H.S.; Chattopadhyay, A.; Copeland, B. Development of Embedded Piezoelectric Acoustic Sensor Array Architecture. Microelectron. Reliab. 2010, 50, 857–863. [Google Scholar] [CrossRef]
- Adreades, C.; Ciampa, F. Embedded Piezoelectric Transducers in Carbon Fibre Composites for Nonlinear Ultrasonic Applications. In Proceedings of the Structural Health Monitoring 2017, Stanford, CA, USA, 12–14 September 2017. [Google Scholar]
- Qiu, L.; Deng, X.; Yuan, S.; Huang, Y.; Ren, Y. Impact Monitoring for Aircraft Smart Composite Skins Based on a Lightweight Sensor Network and Characteristic Digital Sequences. Sensors 2018, 18, 2218. [Google Scholar] [CrossRef] [Green Version]
- Kurita, H.; Wang, Z.; Nagaoka, H.; Narita, F. Fabrication and Mechanical Properties of Carbon-Fiber-Reinforced Polymer Composites with Lead-Free Piezoelectric Nanoparticles. Sens. Mater. 2020, 32, 2453. [Google Scholar] [CrossRef]
- Kopsaftopoulos, F.; Chang, F.-K. A Dynamic Data-Driven Stochastic State-Awareness Framework for the Next Generation of Bio-inspired Fly-by-Feel Aerospace Vehicles. In Handbook of Dynamic Data Driven Applications Systems; Blasch, E., Ravela, S., Aved, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 697–721. ISBN 978-3-319-95503-2. [Google Scholar]
- Na, W.; Baek, J. A Review of the Piezoelectric Electromechanical Impedance Based Structural Health Monitoring Technique for Engineering Structures. Sensors 2018, 18, 1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.; Zhu, X.; Wang, C.; Zhang, L.; Li, X.; Lee, S.; Huang, Z.; Chen, R.; Chen, Z.; Wang, C.; et al. Stretchable Ultrasonic Transducer Arrays for Three-Dimensional Imaging on Complex Surfaces. Sci. Adv. 2018, 4, eaar3979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martowicz, A.; Rosiek, M.; Manka, M.; Uhl, T. Design Process of IDT Aided by Multiphysics FE Analyses. Int. J. Multiphys. 2012, 6, 129–148. [Google Scholar] [CrossRef]
- Lugovtsova, Y.; Bulletti, A.; Giannelli, P.; Capineri, L.; Prager, J. Characterization of a Flexible Piezopolymer-Based Interdigital Transducer for Selective Excitation of Ultrasonic Guided Waves. In Proceedings of the 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, NV, USA, 6–7 September 2020; IEEE: Las Vegas, NV, USA, 2020; pp. 1–4. [Google Scholar]
- Bulletti, A.; Giannelli, P.; Calzolai, M.; Capineri, L. Multielement Interdigital Transducers for Structural Health Monitoring. In Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 22–25 October 2018; pp. 1–3. [Google Scholar]
- Thompson, D.O.; Chimenti, D.E. Review of Progress in Quantitative Nondestructive Evaluation; Springer: New York, NY, USA, 1998; Volume 17A. [Google Scholar]
- Wang, Z.; Tang, T.; Chen, S.; Chen, B. Field Analysis and Calculation of Interdigital Transducers with Arbitrary Finger Shapes. J. Phys. Appl. Phys. 2006, 39, 4902–4908. [Google Scholar] [CrossRef]
- Mańka, M.; Rosiek, M.; Martowicz, A.; Stepinski, T.; Uhl, T. PZT Based Tunable Interdigital Transducer for Lamb Waves Based NDT and SHM. Mech. Syst. Signal Process. 2016, 78, 71–83. [Google Scholar] [CrossRef]
- Lugovtsova, Y.; Bulling, J.; Boller, C.; Prager, J. Analysis of Guided Wave Propagation in a Multi-Layered Structure in View of Structural Health Monitoring. Appl. Sci. 2019, 9, 4600. [Google Scholar] [CrossRef] [Green Version]
- Giannelli, P.; Bulletti, A.; Capineri, L. Multifunctional Piezopolymer Film Transducer for Structural Health Monitoring Applications. IEEE Sens. J. 2017, 17, 4583–4586. [Google Scholar] [CrossRef]
- Marchi, L.D.; Testoni, N.; Marzani, A. Spiral-Shaped Piezoelectric Sensors for Lamb Waves Direction of Arrival (DoA) Estimation. Smart Mater. Struct. 2018, 27, 045016. [Google Scholar] [CrossRef]
- Koduru, J.P.; Rose, J.L. Mode Controlled Guided Wave Tomography Using Annular Array Transducers for SHM of Water Loaded Plate like Structures. Smart Mater. Struct. 2013, 22, 125021. [Google Scholar] [CrossRef]
- Gao, H. Ultrasonic Guided Wave Annular Array Transducers for Structural Health Monitoring. In AIP Conference Proceedings; AIP: Brunswick, ME, USA, 2006; Volume 820, pp. 1680–1686. [Google Scholar]
- Salowitz, N.P.; Kim, S.-J.; Kopsaftopoulos, F.; Li, Y.-H.; Chang, F.-K. Design and Analysis of Radially Polarized Screen-Printed Piezoelectric Transducers. J. Intell. Mater. Syst. Struct. 2017, 28, 934–946. [Google Scholar] [CrossRef]
- Giurgiutiu, V.; Zagrai, A.N.; Bao, J. Piezoelectric Wafer Embedded Active Sensors for Aging Aircraft Structural Health Monitoring. Struct. Health Monit. 2002, 1, 41–46. [Google Scholar] [CrossRef]
- Ren, B.; Lissenden, C. Phased Array Transducers for Ultrasonic Guided Wave Mode Control and Identification for Aircraft Structural Health Monitoring. Mater. Eval. 2015, 73, 1089–1100. [Google Scholar]
- Aranguren, G.; Monje, P.M.; Cokonaj, V.; Barrera, E.; Ruiz, M. Ultrasonic Wave-Based Structural Health Monitoring Embedded Instrument. Rev. Sci. Instrum. 2013, 84, 125106. [Google Scholar] [CrossRef]
- Rathod, V.T. A Review of Electric Impedance Matching Techniques for Piezoelectric Sensors, Actuators and Transducers. Electronics 2019, 8, 169. [Google Scholar] [CrossRef] [Green Version]
- Schubert, L.; Frankenstein, B.; Reppe, G. Match-X Based Microsystem for Structural Health Monitoring. In Proceedings of the 2006 1st Electronic Systemintegration Technology Conference, Dresden, Germany, 5–7 September 2006; pp. 635–641. [Google Scholar]
- Ferin, G.; Muralidharan, Y.; Mesbah, N.; Chatain, P.; Bantignies, C.; Le Khanh, H.; Flesch, E. Smart Autonomous Wireless Acoustic Sensors for Aeronautical SHM Applications. In Proceedings of the 2015 IEEE International Ultrasonics Symposium (IUS), Taipei, Taiwan, 21–24 October 2015; pp. 1–4. [Google Scholar]
- Beattie, A. Acoustic Emission Non-Destructive Testing of Structures Using Source Location Techniques; Sandia National Lab: Albuquerque, NM, USA, 2013. [Google Scholar]
- Ebrahimkhanlou, A.; Dubuc, B.; Salamone, S. A Generalizable Deep Learning Framework for Localizing and Characterizing Acoustic Emission Sources in Riveted Metallic Panels. Mech. Syst. Signal Process. 2019, 130, 248–272. [Google Scholar] [CrossRef]
- Yun, J. Available online: https://Vtechworks.Lib.vt.Edu/Handle/10919/42507 (accessed on 28 April 2011).
- Thomas, A.J.; Kim, J.J.; Tallman, T.N.; Bakis, C.E. Damage Detection in Self-Sensing Composite Tubes via Electrical Impedance Tomography. Compos. Part B Eng. 2019, 177, 107276. [Google Scholar] [CrossRef]
- Boukabache, H.; Escriba, C.; Fourniols, J.-Y. Toward Smart Aerospace Structures: Design of a Piezoelectric Sensor and Its Analog Interface for Flaw Detection. Sensors 2014, 14, 20543–20561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capineri, L.; Giannelli, P.; Calabrese, G. Comparison of Voltage-Mode and Charge-Mode Amplifiers for Interfacing Piezopolymer Transducers to SHM Electronic Systems. In Proceedings of the 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Genoa, Italy, 27–29 November 2019; pp. 278–281. [Google Scholar]
- Ren, Y.; Qiu, L.; Yuan, S.; Su, Z. A Diagnostic Imaging Approach for Online Characterization of Multi-Impact in Aircraft Composite Structures Based on a Scanning Spatial-Wavenumber Filter of Guided Wave. Mech. Syst. Signal Process. 2017, 90, 44–63. [Google Scholar] [CrossRef]
- Capineri, L.; Bulletti, A.; Calzolai, M.; Francesconi, D. A Real-Time Electronic System for Automated Impact Detection on Aircraft Structures Using Piezoelectric Transducers. Procedia Eng. 2014, 87, 1243–1246. [Google Scholar] [CrossRef] [Green Version]
- Ding, K.; Yuan, S.; Wu, Z.; International Conference on Structural Health Monitoring and Integrity Management. Structural Health Monitoring and Integrity Management; CRC Press/Balkema: Leiden, The Netherlands, 2015; ISBN 978-1-315-69046-9. [Google Scholar]
- Gao, F.; Zeng, L.; Lin, J.; Shao, Y. Damage Assessment in Composite Laminates via Broadband Lamb Wave. Ultrasonics 2018, 86, 49–58. [Google Scholar] [CrossRef]
- Glaser, S.; Li, H.; Wang, M.; Ou, J.; Lynch, J. Sensor Technology Innovation for the Advancement of Structural Health Monitoring: A Strategic Program of US-China Research for the next Decade. Smart Struct. Syst. 2007, 3, 221–244. [Google Scholar] [CrossRef] [Green Version]
- Haller, M.I.; Khuri-Yakub, B.T. A Surface Micromachined Electrostatic Ultrasonic Air Transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1996, 43, 1–6. [Google Scholar] [CrossRef]
- Yaralioglu, G.G.; Degertekin, F.L.; Badi, M.H.; Auld, B.A.; Khuri-Yakub, B.T. Finite Element Method and Normal Mode Modeling of Capacitive Micromachined SAW and Lamb Wave Transducers. In Proceedings of the 2000 IEEE Ultrasonics Symposium, San Juan, PR, USA, 22–25 October 2000; Volume 1, pp. 129–132. [Google Scholar]
- Brenner, K.; Ergun, A.; Firouzi, K.; Rasmussen, M.; Stedman, Q.; Khuri–Yakub, B. Advances in Capacitive Micromachined Ultrasonic Transducers. Micromachines 2019, 10, 152. [Google Scholar] [CrossRef] [Green Version]
- Bradley, R.J. Capacitive Ultrasonic Transducers Fabricated Using Microstereolithography. In Proceedings of the 2007 IEEE Ultrasonics Symposium, New York, NY, USA, 28–31 October 2007. [Google Scholar]
- Butaud, P.; Bourbon, G.; Le Moal, P.; Joseph, E.; Verdin, B.; Ramasso, E.; Placet, V. CMUT Sensors Based on Circular Membranes Array for SHM Applications. In Proceedings of the Smart Structures + Nondestructive Evaluation, Denver, CO, USA, 3–7 March 2019. [Google Scholar]
- Savoia, A.S.; Caliano, G.; Pappalardo, M. A CMUT Probe for Medical Ultrasonography: From Microfabrication to System Integration. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 1127–1138. [Google Scholar] [CrossRef] [PubMed]
- Boubenia, R.; Bourbon, G.; Le Moal, P.; Joseph, E.; Ramasso, E.; Placet, V. Acoustic Emission Sensing Using MEMS for Structural Health Monitoring: Demonstration of a Newly Designed Capacitive Micro Machined Ultrasonic Transducer. In Proceedings of the 12th International Workshop on Structural Health Monitoring, Stanford, CA, USA, 10–12 September 2019. [Google Scholar]
- Kabir, M.; Kazari, H.; Ozevin, D. Piezoelectric MEMS Acoustic Emission Sensors. Sens. Actuators Phys. 2018, 279, 53–64. [Google Scholar] [CrossRef]
- Ozevin, D. MEMS Acoustic Emission Sensors. Appl. Sci. 2020, 10, 8966. [Google Scholar] [CrossRef]
- Dumont, M. Usage of MEMS Capacitive Acceleration Sensors for Structural Monitoring. In Proceedings of the 7th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII 2015), Torino, Italy, 1–3 July 2015; De Stefano, A., Ed.; Curran Associates, Inc.: Red Hook, NY, USA, 2016; ISBN 978-1-5108-2107-1. [Google Scholar]
- Güemes, A.; Fernandez-Lopez, A.; Pozo, A.R.; Sierra-Pérez, J. Structural Health Monitoring for Advanced Composite Structures: A Review. J. Compos. Sci. 2020, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Perçin, G.; Atalar, A.; Levent Degertekin, F.; Khuri-Yakub, B.T. Micromachined Two-Dimensional Array Piezoelectrically Actuated Transducers. Appl. Phys. Lett. 1998, 72, 1397–1399. [Google Scholar] [CrossRef] [Green Version]
- Muralt, P.; Kholkin, A.; Kohli, M.; Maeder, T. Piezoelectric Actuation of PZT Thin-Film Diaphragms at Static and Resonant Conditions. Sens. Actuators Phys. 1996, 53, 398–404. [Google Scholar] [CrossRef]
- Bernstein, J.J.; Finberg, S.L.; Houston, K.; Niles, L.C.; Chen, H.D.; Cross, L.E.; Li, K.K.; Udayakumar, K. Micromachined High Frequency Ferroelectric Sonar Transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1997, 44, 960–969. [Google Scholar] [CrossRef]
- Feng, G.-H.; Chen, W.-M. Micromachined Lead Zirconium Titanate Thin-Film-Cantilever-Based Acoustic Emission Sensor with Poly(N-Isopropylacrylamide) Actuator for Increasing Contact Pressure. Smart Mater. Struct. 2016, 25, 055046. [Google Scholar] [CrossRef]
- Farrar, C.R.; Park, G.; Todd, M.D. Sensing Network Paradigms for Structural Health Monitoring. In New Developments in Sensing Technology for Structural Health Monitoring; Mukhopadhyay, S.C., Ed.; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2011; Volume 96, pp. 137–157. ISBN 978-3-642-21098-3. [Google Scholar]
- Giannelli, P.; Bulletti, A.; Granato, M.; Frattini, G.; Calabrese, G.; Capineri, L. A Five-Level, 1-MHz, Class-D Ultrasonic Driver for Guided-Wave Transducer Arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 1616–1624. [Google Scholar] [CrossRef] [PubMed]
- Champaigne, K.D.; Sumners, J. Low-power Electronics for Distributed Impact Detection and Piezoelectric Sensor Applications. In Proceedings of the 2007 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2007. [Google Scholar]
- Fu, H.; Sharif Khodaei, Z.; Aliabadi, M.H.F. An Event-Triggered Energy-Efficient Wireless Structural Health Monitoring System for Impact Detection in Composite Airframes. IEEE Internet Things J. 2019, 6, 1183–1192. [Google Scholar] [CrossRef]
- Overly, T.G.S.; Park, G.; Farinholt, K.M.; Farrar, C.R. Development of an Extremely Compact Impedance-Based Wireless Sensing Device. Smart Mater. Struct. 2008, 17, 065011. [Google Scholar] [CrossRef]
- Giannì, C.; Balsi, M.; Esposito, S.; Ciampa, F. Low-power Global Navigation Satellite System-enabled Wireless Sensor Network for Acoustic Emission Localisation in Aerospace Components. Struct. Control Health Monit. 2020, 27, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Mateu, L.; Moll, F. Review of Energy Harvesting Techniques and Applications for Microelectronics (Keynote Address). In Volume 5837, VLSI Circuits and Systems II; Lopez, J.F., Fernandez, F.V., Lopez-Villegas, J.M., de la Rosa, J.M., Eds.; SPIE: Bellingham, WA, USA, 2005; pp. 359–373. [Google Scholar]
- Sodano, H.A.; Inman, D.J.; Park, G. A Review of Power Harvesting from Vibration Using Piezoelectric Materials. Shock Vib. Dig. 2004, 36, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, M.; Ferrari, V.; Guizzetti, M.; Andò, B.; Baglio, S.; Trigona, C. Improved Energy Harvesting from Wideband Vibrations by Nonlinear Piezoelectric Converters. Sens. Actuators Phys. 2010, 162, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Park, G.; Farinholt, K.M.; Farrar, C.R.; Rosing, T.; Todd, M.D. Powering Wireless SHM Sensor Nodes through Energy Harvesting. In Energy Harvesting Technologies; Priya, S., Inman, D.J., Eds.; Springer: Boston, MA, USA, 2009; pp. 493–506. ISBN 978-0-387-76463-4. [Google Scholar]
- Zelenika, S.; Hadas, Z.; Bader, S.; Becker, T.; Gljušćić, P.; Hlinka, J.; Janak, L.; Kamenar, E.; Ksica, F.; Kyratsi, T.; et al. Energy Harvesting Technologies for Structural Health Monitoring of Airplane Components—A Review. Sensors 2020, 20, 6685. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.; Ferrari, V.; Guizzetti, M.; Marioli, D. An Autonomous Battery-Less Sensor Module Powered by Piezoelectric Energy Harvesting with RF Transmission of Multiple Measurement Signals. Smart Mater. Struct. 2009, 18, 085023. [Google Scholar] [CrossRef]
- Available online: www.metisdesign.com (accessed on 20 April 2021).
- Available online: http://Cordis.Europa.Eu/Project/Rcn/108855_en.Html (accessed on 20 April 2021).
- Smithard, J.; Norman, P.; van der Velden, S.; Powlesland, I.; Jung, G.; Rajic, N.; Galea, S. The Acousto Ultrasonic Structural Health Monitoring Array Module (AUSAM+) for Damage Detection in Structures. Procedia Eng. 2017, 188, 448–455. [Google Scholar] [CrossRef]
- Ju, Z.; Li, F.; Janapati, V.; Chung, H.; Yadav, S.; Cheung, C. Sensor Network Design Technique for Monitoring Railroad Structures. In Proceedings of the 1st International Workshop on Structural Health Monitoring for Railway Systems, Qingdao, China, 12–14 October 2016. [Google Scholar]
- Sundaram, B.A.; Ravisankar, K.; Senthil, R.; Parivallal, S. Wireless Sensors for Structural Health Monitoring and Damage Detection Techniques. Curr. Sci. 2013, 104, 1496–1505. [Google Scholar]
- Ren, Y.; Yuan, S.; Qiu, L.; Mei, H. Impact Localization by a Multi-Radio Sink–Based Wireless Sensor Network for Large-Scale Structures. Adv. Struct. Eng. 2017, 20, 157–169. [Google Scholar] [CrossRef]
- Testoni, N.; Aguzzi, C.; Arditi, V.; Zonzini, F.; De Marchi, L.; Marzani, A.; Cinotti, T.S. A Sensor Network with Embedded Data Processing and Data-to-Cloud Capabilities for Vibration-Based Real-Time SHM. J. Sens. 2018, 2018, 2107679. [Google Scholar] [CrossRef]
- Lee, Y.; Blaauw, D.; Sylvester, D. Ultralow Power Circuit Design for Wireless Sensor Nodes for Structural Health Monitoring. Proc. IEEE 2016, 104, 1529–1546. [Google Scholar] [CrossRef]
- Mascareñas, D.; Cattaneo, A.; Theiler, J.; Farrar, C. Compressed Sensing Techniques for Detecting Damage in Structures. Struct. Health Monit. Int. J. 2013, 12, 325–338. [Google Scholar] [CrossRef] [Green Version]
- Arcadius Tokognon, C.; Gao, B.; Tian, G.Y.; Yan, Y. Structural Health Monitoring Framework Based on Internet of Things: A Survey. IEEE Internet Things J. 2017, 4, 619–635. [Google Scholar] [CrossRef]
- Scuro, C.; Sciammarella, P.F.; Lamonaca, F.; Olivito, R.S.; Carni, D.L. IoT for Structural Health Monitoring. IEEE Instrum. Meas. Mag. 2018, 21, 4–14. [Google Scholar] [CrossRef]
- Muttillo, M.; Stornelli, V.; Alaggio, R.; Paolucci, R.; Di Battista, L.; de Rubeis, T.; Ferri, G. Structural Health Monitoring: An IoT Sensor System for Structural Damage Indicator Evaluation. Sensors 2020, 20, 4908. [Google Scholar] [CrossRef]
- Abdelgawad, A.; Yelamarthi, K. Internet of Things (IoT) Platform for Structure Health Monitoring. Wirel. Commun. Mob. Comput. 2017, 2017, 1–10. [Google Scholar] [CrossRef]
- IEEE Staff. 2018 IEEE 4th World Forum on Internet of Things (WF IoT); IEEE: Piscataway, NJ, USA, 2018; ISBN 978-1-4673-9945-6. [Google Scholar]
- Worden, K.; Baldacchino, T.; Rowson, J.; Cross, E.J. Some Recent Developments in SHM Based on Nonstationary Time Series Analysis. Proc. IEEE 2016, 104, 1589–1603. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Chen, Z.; Wei, S.; Xu, Y.; Tang, Z.; Li, H. The State of the Art of Data Science and Engineering in Structural Health Monitoring. Engineering 2019, 5, 234–242. [Google Scholar] [CrossRef]
- Yuan, F.-G.; Zargar, S.A.; Chen, Q.; Wang, S. Machine Learning for Structural Health Monitoring: Challenges and Opportunities. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, SPIE, USA, 23 April 2020; p. 2. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11379/2561610/Machine-learning-for-structural-health-monitoring-challenges-and-opportunities/10.1117/12.2561610.full?SSO=1 (accessed on 20 April 2021).
- Hesser, D.F.; Kocur, G.K.; Markert, B. Active Source Localization in Wave Guides Based on Machine Learning. Ultrasonics 2020, 106, 106144. [Google Scholar] [CrossRef]
- Mariani, S.; Rendu, Q.; Urbani, M.; Sbarufatti, C. Causal Dilated Convolutional Neural Networks for Automatic Inspection of Ultrasonic Signals in Non-Destructive Evaluation and Structural Health Monitoring. Mech. Syst. Signal Process. 2021, 157, 107748. [Google Scholar] [CrossRef]
- Sun, L.; Shang, Z.; Xia, Y.; Bhowmick, S.; Nagarajaiah, S. Review of Bridge Structural Health Monitoring Aided by Big Data and Artificial Intelligence: From Condition Assessment to Damage Detection. J. Struct. Eng. 2020, 146, 04020073. [Google Scholar] [CrossRef]
- Melville, J.; Alguri, K.S.; Deemer, C.; Harley, J.B. Structural Damage Detection Using Deep Learning of Ultrasonic Guided Waves. AIP Conf. Proc. 2018, 1949, 230004. [Google Scholar]
Type | A | B | C |
---|---|---|---|
Model | Circular_PVDF | P-876.SP1 DuraAct | SML-SP-1/4-0 |
Manufacturer | By authors (Precision Acoustics material) | Physik Instrumente | Acellent |
Capacitance | 86 pF | 8 nF +/−20% | 1.1 nF |
Thickness piezoelectric element [µm] | 110 | 200 | 140 |
Material | Piezo-polymer | Piezo-ceramic | Piezo-ceramic |
Shape | Circular | Rectangular | Circular |
Dimensions [mm] | Diameter 6.5 | 16 × 13 | 6 |
Operation temperature Range | −80 °C, +50 °C | −20 °C, +150 °C | −40 °C, +105 °C |
Acoustic Impedance [MRayl] | 2.7 | 30 | 33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capineri, L.; Bulletti, A. Ultrasonic Guided-Waves Sensors and Integrated Structural Health Monitoring Systems for Impact Detection and Localization: A Review. Sensors 2021, 21, 2929. https://doi.org/10.3390/s21092929
Capineri L, Bulletti A. Ultrasonic Guided-Waves Sensors and Integrated Structural Health Monitoring Systems for Impact Detection and Localization: A Review. Sensors. 2021; 21(9):2929. https://doi.org/10.3390/s21092929
Chicago/Turabian StyleCapineri, Lorenzo, and Andrea Bulletti. 2021. "Ultrasonic Guided-Waves Sensors and Integrated Structural Health Monitoring Systems for Impact Detection and Localization: A Review" Sensors 21, no. 9: 2929. https://doi.org/10.3390/s21092929