Optimized Design of a Pump Laser System for a Spin Exchange Relaxation Free Inertial Measurement Device
Abstract
1. Introduction
2. Experiments
3. Pump Method and Power Stability
4. Intensity Distribution of the Spot
4.1. Simulation of Substitute Light Source
4.2. Calculation of the Freeform Surface Lens
4.2.1. Thickness d and Refractive Index nL
4.2.2. Focus Length f
4.2.3. Aperture D
4.3. Thickness Optimization Design of the Freeform Surface Lens
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kornack, T.W.; Ghosh, R.K.; Romalis, M.V. Nuclear spin gyroscope based on an atomic co-magnetometer. Phys. Rev. Lett. 2005, 95, 230801. [Google Scholar] [CrossRef] [PubMed]
- Limes, M.E.; Sheng, D.; Romalis, M.V. 3He-129Xe Comagnetometery using 87Rb Detection and Decoupling. Phys. Rev. Lett. 2018, 120, 33401. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Fan, W.; Jiang, L. Rotation sensing using K-Rb-21Ne comagnetometer. Phys. Rev. A 2016, 94, 032109. [Google Scholar] [CrossRef]
- Smiciklas, M.; Brown, J.M.; Cheuk, L.W. New Test of Local Lorentz Invariance Using a 21Ne-Rb- K Comagnetometer. Phys. Rev. Lett. 2011, 107, 171604. [Google Scholar] [CrossRef]
- Allmendinger, F.; Heil, W.; Karpuk, S. New Limit on Lorentz-Invariance-and CPT-Violating Neutron Spin Interactions Using a Free-Spin-Precession 3He-129Xe Comagnetometer. Phys. Rev. Lett. 2014, 112, 110801. [Google Scholar] [CrossRef]
- Hunter, L.; Gordon, J.; Peck, S. Using the earth as a polarized electron source to search for long-range spin-spin interactions. Science 2013, 339, 928–932. [Google Scholar] [CrossRef]
- Vasilakis, G.; Brown, J.M.; Kornack, T.W. Limits on new long range nuclear spin-dependent forces set with a K-3He co-magnetometer. Phys. Rev. Lett. 2009, 103. [Google Scholar] [CrossRef]
- Allred, J.C.; Lyman, R.N.; Kornack, T.W. High-sensitivity atomic magnetometer unaffffected by spin-exchange relaxation. Phys. Rev. Lett. 2002, 89, 261801. [Google Scholar] [CrossRef]
- Ghosh, R.K.; Romalis, M.V. Measurement of spin-exchange and relaxation parameters for polarizing 21Ne with K and Rb. Phys. Rev. A 2010, 81. [Google Scholar] [CrossRef]
- Xing, L.; Zhai, Y.Y.; Fan, W.F. Miniaturized optical rotation detection system based on liguid crystal variable retarder in a K-Rb-21Ne gyroscope. Opt. Express 2019, 24, 38061–38070. [Google Scholar] [CrossRef]
- Shah, V.; Romalis, M.V. Spin-exchange relaxation-free magnetometry using elliptically polarized light. Phys. Rev. Appl. 2009, 80, 013416. [Google Scholar] [CrossRef]
- Walker, T.G.; Happer, W. Spin-exchange optical pumping of noble-gas nuclei. Rev. Mod. Phys. 1997, 63, 629–642. [Google Scholar] [CrossRef]
- Fang, J.C.; Wan, S.G.; Qin, J.; Zhang, C.; Quan, W. Spin exchange relaxation free magnetic gradiometer with dual beam a closed loop Faraday modulation. Opt. Soc. Am. 2014, 31, 512–516. [Google Scholar] [CrossRef]
- Seltzer, S.J.; Romalis, M.V. Unshielded three-axis vector operation of a spin exchange relaxation free atomic magnetometer. Appl. Phys. Lett. 2004, 85, 4804–4806. [Google Scholar] [CrossRef]
- Korver, A.; Thrasher, D.; Bulatowica, M. Synchronous spin-exchange optical pumping. Phys. Rev. Lett. 2015, 115, 253001. [Google Scholar] [CrossRef]
- Gerginov, V.; Krzyzewski, S.; Knappe, S. Pulsed operation of a miniature scalar optically pumped magnetometer. J. Opt. Soc. Am. B 2017, 34, 1429–1434. [Google Scholar] [CrossRef]
- Gusarov, A.; Levron, D.; Baranga, A.B. An all optical scalar and vector spin exchange relaxation free magnetometer employing on-off pump modulation. J. Appl. Phys. 2011, 109, 289–295. [Google Scholar] [CrossRef]
- Sheng, D.; Kabcenell, A.; Romalis, M.V. New Classes of Systematic Effects in Gas Spin Comagnetometers. Phys. Rev. Lett. 2014, 113, 163002. [Google Scholar] [CrossRef]
- Rollins, J.; Ottaway, D.; Zucker, M. Solid-state laser intensity stabilization at the 10^-8 level. Opt. Lett. 2004, 29, 1876–1878. [Google Scholar] [CrossRef]
- Fang, L.; Wang, C.; Li, L. Long-term and wideband laser intensity stabilization with an electro-optic amplitude modulator. Opt. Laser Technol. 2013, 45, 775–781. [Google Scholar]
- Herke, R.; Anderson, M.H.; Baur, T. Liquid crystals in precision optical devices. In Liquid Crystals III; International Society for Optics and Photonics: Bellingham, WA, USA, 1999. [Google Scholar]
- Kornack, T.W.; Romalis, M.V. Dynamics of two overlapping spin ensembles interacting by spin exchange. Phys. Rev. Lett. 2002, 89, 253002. [Google Scholar] [CrossRef]
- Zhivun, E.; Bulatowicz, M.; Hryciuk, A. Dual-axis pi-pulse spin-exchange relaxation-free magnetometer. Phys. Rev. Appl. 2019, 11, 034040. [Google Scholar] [CrossRef]
- Fang, J.C.; Wan, S.G.; Chen, Y. Light-shift measurement and suppression in atomic spin gyroscope. Appl. Opt. 2012, 51, 7714–7717. [Google Scholar] [CrossRef]
- Fang, J.C.; Wan, S.G.; Qin, J. A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation. Rev. Sci. Instrum. 2013, 84. [Google Scholar] [CrossRef]
- Qu, W.; Gu, H.; Tan, Q. Precise design of two dimensional diffractive optical elements for beam shaping. Appl. Opt. 2015, 54, 6521–6525. [Google Scholar] [CrossRef]
- Cao, A.; Pang, H.; Wang, J. Center off-axis tandem microlens arrays for beam homogenization. IEEE Photonics J. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- Kuang, Z.; Li, J.; Edwardson, S. Ultrafast laser beam shaping for material processing at imaging plane by geometric masks using a spatial light modulator. Opt. Lasers Eng. 2015, 70, 1–5. [Google Scholar] [CrossRef]
- Tsai, C.M.; Wu, C.K. Freeform lens design of beam shaping with user-defined rotation-symmetric profile by using numerical method. IEEE Photonics J. 2019, 11, 1–12. [Google Scholar] [CrossRef]
- Luo, X.X.; Liu, H.; Lu, Z.W. Automated optimization of an aspheric light-emitting diode lens for uniform illumination. Appl. Opt 2011, 50, 3412–3418. [Google Scholar] [CrossRef]
- Jing, L.; Wang, Y.; Zhao, H.F. Optical design and fabrication of palm/fingerprint uniform illumination system with a high-power near-infrared light-emitting diode. Appl. Opt. 2017, 56, 4961–4966. [Google Scholar] [CrossRef]
- Yang, T.; Jin, G.F.; Zhu, J. Automated design of freeform imaging systems. Light Sci. Appl. 2017, 6, e17081. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.C.; Lee, T.X.; Ma, S.H. Precise optical modeling for LED lighting verified by cross correlation in the midfield region. Opt Lett. 2006, 31, 2193–2195. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.C.; Chien, W.T.; Moreno, I. Analysis of the farfield region of LEDs. Opt. Express 2009, 17, 13918–13927. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Ke, H.L.; Wang, Y. A new optimization method of freeform surface lens based on non-imaging optics for led source. Optik 2017, 134, 128–134. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, J.; Ke, H.-L.; Yang, Z.-Y.; Han, B.-C. Optimized Design of a Pump Laser System for a Spin Exchange Relaxation Free Inertial Measurement Device. Sensors 2021, 21, 2982. https://doi.org/10.3390/s21092982
Hao J, Ke H-L, Yang Z-Y, Han B-C. Optimized Design of a Pump Laser System for a Spin Exchange Relaxation Free Inertial Measurement Device. Sensors. 2021; 21(9):2982. https://doi.org/10.3390/s21092982
Chicago/Turabian StyleHao, Jian, Hong-Liang Ke, Zhai-Yue Yang, and Bang-Cheng Han. 2021. "Optimized Design of a Pump Laser System for a Spin Exchange Relaxation Free Inertial Measurement Device" Sensors 21, no. 9: 2982. https://doi.org/10.3390/s21092982
APA StyleHao, J., Ke, H.-L., Yang, Z.-Y., & Han, B.-C. (2021). Optimized Design of a Pump Laser System for a Spin Exchange Relaxation Free Inertial Measurement Device. Sensors, 21(9), 2982. https://doi.org/10.3390/s21092982