Leaf Anthocyanin Content Retrieval with Partial Least Squares and Gaussian Process Regression from Spectral Reflectance Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Overall Process of This Study
2.2. The Datasets
2.3. The Basic Thought and Theory on PLSR and GPR
2.3.1. Partial Least Squares Regression
2.3.2. Gaussian Process Regression
2.4. Wavelength Selection, Model Building for PLSR and GPR
2.5. Other Retrieval Methods
2.6. Model Calibration, Validation, and Evaluation
3. Results
3.1. Statistics for the Leaf Pigment Content
3.2. Retrieval with GPR
3.3. Retrieval with PLSR
3.4. Retrieval with Other Methods
4. Discussion
4.1. Comparison among the Retrieval Methods
4.2. The Most Important Wavelengths Selected and Performance of the Obtained Models
4.3. Performance of the Linear PLSR vs. the Non-Linear GPR Methods
4.4. Applicability of this Study on the Canopy Scale and in Other Relevant Fields
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Symbols
PLSR | Partial least squares regression |
GPR | Gaussian process regression |
R2 | Coefficient of determination |
RMSE | Root mean square error |
ARI | Anthocyanin reflectance index |
mARI | Modified anthocyanin reflectance index |
VARI | Visible atmospherically resistant vegetation index |
ACI | Anthocyanin content index |
PROSPECT | Leaf optical properties spectra |
ANN | Artificial neural network |
PRESS | Predictive residual sum of squares |
SS | Sum of squares |
GP | Gaussian process |
ARD | Automatic relevance determination |
r | Pearson correlation coefficient |
P | Significance level for correlation |
SBBR | Sequential backward band removal |
σm | Characteristic length scale for a variable in GPR |
|β| | Absolute value of the regression coefficient β in PLSR |
R | Reflectance |
log(1/R) | Logarithmic transformation to R |
NDVI | Normalized difference vegetation index |
Mathematical symbols and notation in Section 2.3 | |
Matrixes are capitalized and vectors are in the lowercase bold type. The subscript asterisk (e.g., X*) indicates the test set quantity. | |
′ | The transpose of a matrix or vector |
Data set: = {(xi, yi,)|i = 1, 2, …, n} | |
ℝb | b-dimensional real numbers |
∼ | Distributed according to (e.g., Gaussian distribution) |
Gaussian process | |
Gaussian (normal) distribution | |
Noise variance | |
0 | Vector of all 0′s |
k(x,y) | Covariance (or kernel) function evaluated at x and y |
K(X,Y) | Covariance (or Gram) matrix evaluated with X and Y |
y|x and p(y|x) | Conditional random variable y given x and the corresponding probability |
θ | Vector of hyperparameters |
f | Gaussian process latent function values |
References
- Landi, M.; Tattini, M.; Gould, K.S. Multiple functional roles of anthocyanins in plant-environment interactions. Environ. Exp. Bot. 2015, 119, 4–17. [Google Scholar] [CrossRef]
- Chalker-Scott, L. Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 1999, 70, 1–9. [Google Scholar] [CrossRef]
- Gould, K.S. Nature’s Swiss army knife: The diverse protective roles of anthocyanins in leaves. J. Biomed. Biotechnol. 2004, 314–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, W.D.; Brown, S.P. Autumn tree colours as a handicap signal. Proc. R. Soc. B Biol. Sci. 2001, 268, 1489–1493. [Google Scholar] [CrossRef] [Green Version]
- Manetas, Y.; Drinia, A.; Petropoulou, Y. High contents of anthocyanins in young leaves are correlated with low pools of xanthophyll cycle components and low risk of photoinhibition. Photosynthetica 2002, 40, 349–354. [Google Scholar] [CrossRef]
- Christie, P.J.; Alfenito, M.R.; Walbot, V. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways—Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 1994, 194, 541–549. [Google Scholar] [CrossRef]
- Amr, A.; Al-Tamimi, E. Stability of the crude extracts of Ranunculus asiaticus anthocyanins and their use as food colourants. Int. J. Food Sci. Technol. 2007, 42, 985–991. [Google Scholar] [CrossRef]
- Gamon, J.A.; Surfus, J.S. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 1999, 143, 105–117. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem. Photobiol. 2001, 74, 38–45. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Vina, A.; Gitelson, A.A. Sensitivity to Foliar Anthocyanin Content of Vegetation Indices Using Green Reflectance. IEEE Geosci. Remote Sens. Lett. 2011, 8, 464–468. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Van den Berg, A.K.; Perkins, T.D. Nondestructive estimation of anthocyanin content in autumn sugar maple leaves. HortScience 2005, 40, 685–686. [Google Scholar] [CrossRef] [Green Version]
- Steele, M.R.; Gitelson, A.A.; Rundquist, D.C.; Merzlyak, M.N. Nondestructive Estimation of Anthocyanin Content in Grapevine Leaves. Am. J. Enol. Vitic. 2009, 60, 87–92. [Google Scholar]
- Féret, J.B.; Gitelson, A.A.; Noble, S.D.; Jacquemoud, S. PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 2017, 193, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.; Solovchenko, A. Non-invasive quantification of foliar pigments: Possibilities and limitations of reflectance- and absorbance-based approaches. J. Photochem. Photobiol. B Biol. 2018, 178, 537–544. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verdebout, J.; Schmuck, G.; Andreoli, G.; Hosgood, B. Investigation of leaf biochemistry by statistics. Remote Sens. Environ. 1995, 54, 180–188. [Google Scholar] [CrossRef]
- Kira, O.; Linker, R.; Gitelson, A. Non-destructive estimation of foliar chlorophyll and carotenoid contents: Focus on informative spectral bands. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 251–260. [Google Scholar] [CrossRef]
- Yi, Q.; Jiapaer, G.; Chen, J.; Bao, A.; Wang, F. Different units of measurement of carotenoids estimation in cotton using hyperspectral indices and partial least square regression. ISPRS J. Photogramm. Remote Sens. 2014, 91, 72–84. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J. Remote Sensing of Pigment Content at a Leaf Scale: Comparison among Some Specular Removal and Specular Resistance Methods. Remote Sens. 2019, 11, 983. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Huang, J.F.; Wang, F.M.; Tang, Y.L. Comparison between back propagation neural network and regression models for the estimation of pigment content in rice leaves and panicles using hyperspectral data. Int. J. Remote Sens. 2007, 28, 3457–3478. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Verrelst, J.; Munoz-Mari, J.; Laparra, V.; Mateo-Jimenez, F.; Gomez-Dan, J. A Survey on Gaussian Processes for Earth-Observation Data Analysis A comprehensive investigation. IEEE Geosci. Remote Sens. Mag. 2016, 4, 58–78. [Google Scholar] [CrossRef] [Green Version]
- Lazaro-Gredilla, M.; Titsias, M.K.; Verrelst, J.; Camps-Valls, G. Retrieval of Biophysical Parameters With Heteroscedastic Gaussian Processes. IEEE Geosci. Remote Sens. Lett. 2014, 11, 838–842. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B.R. PARTIAL LEAST-SQUARES REGRESSION - A TUTORIAL. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Wold, S.; Sjostrom, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Campos-Taberner, M.; Garcia-Haro, F.J.; Moreno, A.; Gilabert, M.A.; Sanchez-Ruiz, S.; Martinez, B.; Camps-Valls, G. Mapping Leaf Area Index With a Smartphone and Gaussian Processes. IEEE Geosc. Remote Sens. Lett. 2015, 12, 2501–2505. [Google Scholar] [CrossRef]
- Blix, K.; Camps-Valls, G.; Jenssen, R. Gaussian Process Sensitivity Analysis for Oceanic Chlorophyll Estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1265–1277. [Google Scholar] [CrossRef]
- Stamenkovic, J.; Guerriero, L.; Ferrazzoli, P.; Notarnicola, C.; Greifeneder, F.; Thiran, J.-P. Soil Moisture Estimation by SAR in Alpine Fields Using Gaussian Process Regressor Trained by Model Simulations. IEEE Trans. Geosci. Remote 2017, 55, 4899–4912. [Google Scholar] [CrossRef]
- Verrelst, J.; Alonso, L.; Rivera Caicedo, J.P.; Moreno, J.; Camps-Valls, G. Gaussian Process Retrieval of Chlorophyll Content from Imaging Spectroscopy Data. IEEE J. Selected Top. Appl. Earth Obs. Remote Sens. 2013, 6, 867–874. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Chivkunova, O.B.; Merzlyak, M.N. Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves. Am. J. Bot. 2009, 96, 1861–1868. [Google Scholar] [CrossRef]
- Rosipal, R.; Kraemer, N. Overview and recent advances in partial least squares. In Subspace, Latent Structure and Feature Selection; Saunders, G., Grobelnik, M., Gunn, S., ShaweTaylor, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3940, pp. 34–51. [Google Scholar]
- Viniz, V.E.; Chin, W.W.; Henseler, J.; Wang, H. (Eds.) Handbook of Partial Least Squares: Concepts, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Neal, R.M. Bayesian Learning for Neural Networks; University of Toronto: Toronto, ON, Canada, 1995. [Google Scholar]
- Verrelst, J.; Munoz, J.; Alonso, L.; Delegido, J.; Pablo Rivera, J.; Camps-Valls, G.; Moreno, J. Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. Remote Sens. Environ. 2012, 118, 127–139. [Google Scholar] [CrossRef]
- Mehmood, T.; Liland, K.H.; Snipen, L.; Saebo, S. A review of variable selection methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 2012, 118, 62–69. [Google Scholar] [CrossRef]
- Verrelst, J.; Juan, P.R.; Gitelson, A.; Delegido, J.; Moreno, J.; Camps-Valls, G. Spectral band selection for vegetation properties retrieval using Gaussian processes regression. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 554–567. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Chivkunova, O.B.; Solovchenko, A.E.; Naqvi, K.R. Light absorption by anthocyanins in juvenile, stressed, and senescing leaves. J. Exp. Bot. 2008, 59, 3903–3911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danson, F.M.; Rowland, C.S.; Baret, F. Training a neural network with a canopy reflectance model to estimate crop leaf area index. Int. J. Remote Sens. 2003, 24, 4891–4905. [Google Scholar] [CrossRef]
- Shah, S.H.; Angel, Y.; Houborg, R.; Ali, S.; McCabe, M.F. A Random Forest Machine Learning Approach for the Retrieval of Leaf Chlorophyll Content in Wheat. Remote Sens. 2019, 11, 920. [Google Scholar] [CrossRef] [Green Version]
- Verrelst, J.; Pablo Rivera, J.; Veroustraete, F.; Munoz-Mari, J.; Clevers, J.G.P.W.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods - A comparison. ISPRS J. Photogramm. Remote Sens. 2015, 108, 260–272. [Google Scholar] [CrossRef]
- Zhai, Y.; Cui, L.; Zhou, X.; Gao, Y.; Fei, T.; Gao, W. Estimation of nitrogen, phosphorus, and potassium contents in the leaves of different plants using laboratory-based visible and near-infrared reflectance spectroscopy: Comparison of partial least-square regression and support vector machine regression methods. Int. J. Remote Sens. 2013, 34, 2502–2518. [Google Scholar] [CrossRef]
- Ustin, S.L.; Gitelson, A.A.; Jacquemoud, S.; Schaepman, M.; Asner, G.P.; Gamon, J.A.; Zarco-Tejada, P. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens. Environ. 2009, 113, S67–S77. [Google Scholar] [CrossRef] [Green Version]
- Peters, R.D.; Noble, S.D. Spectrographic measurement of plant pigments from 300 to 800 nm. Remote Sens. Environ. 2014, 148, 119–123. [Google Scholar] [CrossRef]
- Andersen, C.M.; Bro, R. Variable selection in regression-a tutorial. J. Chemom. 2010, 24, 728–737. [Google Scholar] [CrossRef]
- Wang, F.-M.; Huang, J.-F.; Lou, Z.-H. A comparison of three methods for estimating leaf area index of paddy rice from optimal hyperspectral bands. Precis. Agric. 2011, 12, 439–447. [Google Scholar] [CrossRef]
Dataset | Reference | Spectral Range (nm) | Number of Leaves | Pigment Content (nmol/cm2) | |||||
---|---|---|---|---|---|---|---|---|---|
Chlorophylls | Carotenoids | Anthocyanins | |||||||
Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range | ||||
DOGWOOD1 | [10,31,32] | 436–796 | 23 | 5.13 ± 5.33 | 0.07–15.05 | 3.10 ± 2.22 | 0.42–7.88 | 8.64 ± 7.04 | 0.40–22.82 |
DOGWOOD2 | [11] | 400–1017 | 51 | 23.77 ± 7.58 | 1.53–39.81 | 5.39 ± 2.26 | 1.73–10.76 | 12.71 ± 8.21 | 1.07–30.23 |
HAZEL | [31,39] | 400–800 | 13 | 26.37 ± 3.55 | 22.69–34.62 | None | None | 7.13 ± 4.19 | 0.25–13.61 |
MAPLE | [11,31,32] | 400–780 | 48 | 7.43 ± 7.36 | 0.14–32.98 | 5.25 ± 2.37 | 1.82–10.40 | 8.75 ± 6.83 | 1.12–21.67 |
CREEPER | [31,39] | 400–800 | 75 | 11.79 ± 14.92 | 0.09–53.76 | 3.13 ± 3.12 | 0.15–12.27 | 6.72 ± 8.66 | 0.00–26.97 |
TOTAL | 436–780 | 210 | 13.88 ± 12.71 | 0.07–53.76 | 4.23 ± 2.85 | 0.15–12.27 | 8.88 ± 8.05 | 0.00–30.23 |
No. | R2 | RMSE (nmol/cm2) | Wavelength (nm) | ||
---|---|---|---|---|---|
Calibration | Validation | Calibration | Validation | ||
Strategy 1: sum of σm as the wavelength importance indicator | |||||
#1 | 0.81 | 0.82 | 3.47 | 3.53 | 564 |
#2 | 0.87 | 0.88 | 2.89 | 2.93 | 564, 566 |
#3 | 0.93 | 0.93 | 2.18 | 2.23 | 564, 566, 705 |
#4 | 0.93 | 0.93 | 2.18 | 2.23 | 560, 564, 566, 705 |
#5 | 0.93 | 0.93 | 2.18 | 2.23 | 560, 561, 564, 566, 705 |
Strategy 2: sum of σm rankings as the wavelength importance indicator | |||||
#1 | 0.84 | 0.84 | 3.25 | 3.32 | 557 |
#2 | 0.87 | 0.88 | 2.90 | 2.96 | 557, 566 |
#3 | 0.94 | 0.94 | 1.89 | 2.03 | 477, 557, 566 |
#4 | 0.94 | 0.94 | 1.89 | 2.03 | 477, 557, 564, 566 |
#5 | 0.95 | 0.95 | 1.75 | 1.91 | 477, 557, 564, 566, 705 |
No. | Wavelength Importance Indicator | R2 | RMSE (nmol/cm2) | Wavelength (nm) | ||
---|---|---|---|---|---|---|
Calibration | Validation | Calibration | Validation | |||
#1 | Sum of σm | 0.93 | 0.93 | 2.17 | 2.20 | 564, 705 |
#2 | Sum of σm rankings | 0.92 | 0.92 | 2.21 | 2.37 | 477, 557 |
No. | R2 | RMSE (nmol/cm2) | Wavelength (nm) | ||
---|---|---|---|---|---|
Calibration | Validation | Calibration | Validation | ||
Strategy 1: sum of |β| as the wavelength importance indicator | |||||
#1 | 0.08 | 0.12 | 7.71 | 7.71 | 723 |
#2 | 0.09 | 0.12 | 7.67 | 7.74 | 723, 755 |
#3 | 0.09 | 0.12 | 7.67 | 7.74 | 722, 723, 755 |
#4 | 0.09 | 0.02 | 7.66 | 7.74 | 709, 722, 723, 755 |
#5 | 0.09 | 0.12 | 7.66 | 7.74 | 707, 709, 722, 723, 755 |
#6 | 0.87 | 0.88 | 2.88 | 2.89 | 566, 707, 709, 722, 723, 755 |
#7 | 0.87 | 0.88 | 2.88 | 2.90 | 566, 707, 709, 722, 723, 743, 755 |
Strategy 2: sum of |β| rankings as the wavelength importance indicator | |||||
#1 | 0.08 | 0.12 | 7.69 | 7.70 | 725 |
#2 | 0.09 | 0.11 | 7.68 | 7.75 | 725, 744 |
#3 | 0.09 | 0.12 | 7.67 | 7.75 | 725, 744, 755 |
#4 | 0.09 | 0.12 | 7.67 | 7.75 | 725, 744, 754, 755 |
#5 | 0.09 | 0.12 | 7.66 | 7.74 | 707, 725, 744, 754, 755 |
#6 | 0.87 | 0.87 | 2.90 | 2.94 | 564, 707, 725, 744, 754, 755 |
#7 | 0.87 | 0.87 | 2.90 | 2.94 | 564, 707, 723, 725, 744, 754, 755 |
No. | Wavelength Importance indicator | R2 | RMSE (nmol/cm2) | Wavelength (nm) | ||
---|---|---|---|---|---|---|
Calibration | Validation | Calibration | Validation | |||
#1 | Sum of |β| | 0.87 | 0.88 | 2.88 | 2.89 | 566, 709, 723, 755 |
#2 | Sum of |β| rankings | 0.87 | 0.87 | 2.90 | 2.93 | 564, 707, 725, 744, 755 |
Method | R2 | RMSE (nmol/cm2) | ||
---|---|---|---|---|
Calibration | Validation | Calibration | Validation | |
ARI | 0.91 | 0.91 | 2.45 | 2.43 |
mARI | 0.90 | 0.91 | 2.54 | 2.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Huang, J. Leaf Anthocyanin Content Retrieval with Partial Least Squares and Gaussian Process Regression from Spectral Reflectance Data. Sensors 2021, 21, 3078. https://doi.org/10.3390/s21093078
Li Y, Huang J. Leaf Anthocyanin Content Retrieval with Partial Least Squares and Gaussian Process Regression from Spectral Reflectance Data. Sensors. 2021; 21(9):3078. https://doi.org/10.3390/s21093078
Chicago/Turabian StyleLi, Yingying, and Jingfeng Huang. 2021. "Leaf Anthocyanin Content Retrieval with Partial Least Squares and Gaussian Process Regression from Spectral Reflectance Data" Sensors 21, no. 9: 3078. https://doi.org/10.3390/s21093078
APA StyleLi, Y., & Huang, J. (2021). Leaf Anthocyanin Content Retrieval with Partial Least Squares and Gaussian Process Regression from Spectral Reflectance Data. Sensors, 21(9), 3078. https://doi.org/10.3390/s21093078