High-Order Multimode Waveguide Interferometer for Optical Biosensing Applications
Abstract
1. Introduction
2. Multimode Waveguide Interference Sensor
2.1. Higher Order Modes Analysis
2.2. Bulk Sensitivity Calculations
3. Multimode Waveguide Excitation
3.1. Directional Coupling Single Mode Waveguides (DC-SMWs)
3.2. Butt-Coupling Single Mode Waveguides (BC-SMWs)
3.3. Numerical Results
4. Detection Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crosby, D.; Lyons, N.; Greenwood, E.; Harrison, S.; Hiom, S.; Moffat, J.; Quallo, T.; Samuel, E.; Walker, I. A roadmap for the early detection and diagnosis of cancer. Lancet Oncol. 2020, 21, P1397–P1399. [Google Scholar] [CrossRef]
- Guan, W.J.; Chen, R.C.; Zhong, N.S. Strategies for the prevention and management of coronavirus disease 2019. Eur. Respir. J. 2020, 55. [Google Scholar] [CrossRef]
- Doulou, S.; Leventogiannis, K.; Tsilika, M.; Rodencal, M.; Katrini, K.; Antonakos, N.; Kyprianou, M.; Karofylakis, E.; Karageorgos, A.; Koufargyris, P.; et al. A novel optical biosensor for the early diagnosis of sepsis and severe Covid-19: The PROUD study. BMC Infect. Dis. 2020, 20, 860. [Google Scholar] [CrossRef]
- Soler, M.; Estevez, M.C.; Cardenosa-Rubio, M.; Lechuga, L.M. How Nanophotonic Label-Free Biosensors Can Contribute to Rapid and Massive Diagnostics of Respiratory Virus Infections: COVID-19 Case. ACS Sens. 2020, 5, 0c01180. [Google Scholar] [CrossRef] [PubMed]
- Pirzada, M.; Altintas, Z. Recent Progress in Optical Sensors for Biomedical Diagnostics. Micromachines 2020, 11, 356. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J. Optical biosensors: An exhaustive and comprehensive review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef]
- Waffo, A.; Yesildag, C.; Caserta, G.; Katz, S.; Zebger, I.; Lensen, M.; Wollenberger, U.; Scheller, F.; Altintas, Z. Fully electrochemical MIP sensor for artemisinin. Sens. Actuators B Chem. 2018, 275, 163–173. [Google Scholar] [CrossRef]
- Ahmad, O.S.; Bedwell, T.S.; Esen, C.; Garcia-Cruz, A.; Piletsky, S.A. Molecularly Imprinted Polymers in Electrochemical and Optical Sensors. Trends Biotechnol. 2019, 37, 294–309. [Google Scholar] [CrossRef]
- Gardikis, K.; Signorelli, M.; Ferrario, C.; Schiraldi, A.; Fortina, M.G.; Hatziantoniou, S.; Demetzos, C.; Fessas, D. Microbial biosensors to monitor the encapsulation effectiveness of Doxorubicin in chimeric advanced Drug Delivery Nano Systems: A calorimetric approach. Int. J. Pharm. 2017, 516, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhang, X.; Yao, Q.; He, F. A novel method for the rapid detection of microbes in blood using pleurocidin antimicrobial peptide functionalized piezoelectric sensor. J. Microbiol. Methods 2017, 133, 69–75. [Google Scholar] [CrossRef]
- Aljabali, A.A.A.; Hussein, E.; Aljumaili, O.; Zoubi, M.A.; Altrad, B.; Albatayneh, K.; Al-razaq, M.A.A. Rapid Magnetic Nanobiosensor for the detection of Serratia marcescen. IOP Conf. Ser. Mater. Sci. Eng. 2018, 305, 012005. [Google Scholar] [CrossRef]
- Walter, J.G.; Eilers, A.; Alwis, L.S.M.; Roth, B.W.; Bremer, K. SPR Biosensor Based on Polymer Multi-Mode Optical Waveguide and Nanoparticle Signal Enhancement. Sensors 2020, 20, 2889. [Google Scholar] [CrossRef]
- Nie, W.; Wang, Q.; Yang, X.; Zhang, H.; Li, Z.; Gao, L.; Zheng, Y.; Liu, X.; Wang, K. High sensitivity surface plasmon resonance biosensor for detection of microRNA based on gold nanoparticles-decorated molybdenum sulfide. Anal. Chim. Acta 2017, 993, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Shamy, R.S.E.; Khalil, D.; Swillam, M.A. Mid Infrared Optical Gas Sensor Using Plasmonic Mach-Zehnder Interferometer. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Karabchevsky, A.; Katiyi, A.; Ang, A.S.; Hazan, A. On-chip nanophotonics and future challenges. Nanophotonics 2020, 9. [Google Scholar] [CrossRef]
- Grajales, D.; Gavela, A.F.; Domínguez, C.; Sendra, J.R.; Lechuga, L.M. Low-cost vertical taper for highly efficient light in-coupling in bimodal nanointerferometric waveguide biosensors. J. Phys. Photonics 2019, 1, 025002. [Google Scholar] [CrossRef]
- Ramirez, J.C.; Gabrielli, L.H.; Lechuga, L.M.; Hernández-Figueroa, H.E. Trimodal Waveguide Demonstration and Its Implementation as a High Order Mode Interferometer for Sensing Application. Sensors 2019, 19, 2821. [Google Scholar] [CrossRef]
- Ebihara, K.; Uchiyamada, K.; Asakawa, K.; Okubo, K.; Suzuki, H. Trimodal polymer waveguide interferometer for chemical sensing. Jpn. J. Appl. Phys. 2019, 58, 062005. [Google Scholar] [CrossRef]
- Heidarzadeh, H. Analysis and simulation of a plasmonic biosensor for hemoglobin concentration detection using noble metal nano-particles resonances. Opt. Commun. 2020, 459, 124940. [Google Scholar] [CrossRef]
- Fathi, F.; Rashidi, M.R.; Omidi, Y. Ultra-sensitive detection by metal nanoparticles-mediated enhanced SPR biosensors. Talanta 2019, 192, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Fathi, F.; Rahbarghazi, R.; Movassaghpour, A.A.; Rashidi, M.R. Detection of CD133-marked cancer stem cells by surface plasmon resonance: Its application in leukemia patients. Biochim. Biophys. Acta (BBA) Gen. Subj. 2019, 1863, 1575–1582. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Park, J.H.; Jeong, D.H.; Lee, H.Y.; Lee, S.K. Real-time detection of prostate-specific antigens using a highly reliable fiber-optic localized surface plasmon resonance sensor combined with micro fluidic channel. Sens. Actuators B Chem. 2018, 273, 891–898. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Wang, Y.; Sun, K.; Chen, X.; Chen, H.; Zhou, J. Reproducible Plasmonic Nanopyramid Array of Various Metals for Highly Sensitive Refractometric and Surface-Enhanced Raman Biosensing. ACS Omega 2018, 3, 14181–14187. [Google Scholar] [CrossRef] [PubMed]
- Tu, X.; Chen, S.L.; Song, C.; Huang, T.; Guo, L.J. Ultrahigh Q Polymer Microring Resonators for Biosensing Applications. IEEE Photonics J. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Hoppe, N.; Fohn, T.; Diersing, P.; Scheck, P.; Vogel, W.; Rosa, M.; Kaschel, M.; Bach, M.; Berroth, M. Design of an Integrated Dual-Mode Interferometer on 250 nm Silicon-on-Insulator. IEEE J. Sel. Top. Quantum Electron. 2016, 23, 444–451. [Google Scholar] [CrossRef]
- Gut, K.; Karasiński, P.; Wójcik, W.; Rogoziński, R.; Opilski, Z.; Opilski, A. Applicability of interference TE0-TM0 modes and TE0-TE1 modes to the construction of waveguide sensors. Opt. Appl. 1999, 29, 101–110. [Google Scholar]
- Zinoviev, K.E.; González-Guerrero, A.B.; Domínguez, C.; Lechuga, L.M. Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis. J. Lightwave Technol. 2011, 29, 1926–1930. [Google Scholar] [CrossRef]
- Ramirez, J.C.; Lechuga, L.M.; Gabrielli, L.H.; Hernandez-Figueroa, H.E. Study of a low-cost trimodal polymer waveguide for interferometric optical biosensors. Opt. Express 2015, 23, 11985–11994. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, M.; Wu, Z.; Morthier, G. Investigation of Grating-Assisted Trimodal Interferometer Biosensors Based on a Polymer Platform. Sensors 2018, 18, 1502. [Google Scholar] [CrossRef]
- Duval, D.; González-Guerrero, A.B.; Dante, S.; Osmond, J.; Monge, R.; Fernández, L.J.; Zinoviev, K.E.; Domínguez, C.; Lechuga, L.M. Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers. Lab Chip 2012, 12, 1987–1994. [Google Scholar] [CrossRef]
- Okamoto, K. Fundamentals of Optical Waveguides, 2nd ed.; Academic Press: San Diego, CA, USA, 2006. [Google Scholar]
Mode Number (n) | w [nm] | [ rad/m] |
---|---|---|
1 | 600 | 1.79 |
2 | 900 | 2.36 |
3 | 1300 | 2.29 |
4 | 1600 | 2.50 |
5 | 1900 | 2.64 |
6 | 2200 | 2.74 |
7 | 2500 | 2.83 |
8 | 2900 | 2.70 |
Mode Number (n) | w [nm] | P TE [%] | P TE [%] | P TE [%] |
---|---|---|---|---|
0 | 600 | 69.4 | 13.1 | 17.5 |
0 | 900 | 70.9 | 12.2 | 16.9 |
0 | 1300 | 71.4 | 11.9 | 16.7 |
0 | 1600 | 71.5 | 11.9 | 16.7 |
0 | 1900 | 71.5 | 11.8 | 16.6 |
0 | 2200 | 71.6 | 11.8 | 16.6 |
0 | 2500 | 71.6 | 11.8 | 16.6 |
0 | 2900 | 71.6 | 11.8 | 16.6 |
Mode Number (n) | w [nm] | P TE [%] | P TE [%] | P TE [%] |
1 | 600 | 56.1 | 20.7 | 23.2 |
2 | 900 | 56.0 | 20.0 | 24.0 |
3 | 1300 | 61.7 | 15.6 | 22.7 |
4 | 1600 | 62.1 | 15.8 | 22.0 |
5 | 1900 | 62.1 | 15.8 | 22.1 |
6 | 2200 | 61.6 | 15.6 | 22.8 |
7 | 2500 | 60.5 | 15.2 | 24.4 |
8 | 2900 | 64.8 | 15.0 | 20.2 |
Mode Number (n) | w [nm] | [ rad/m] |
---|---|---|
1 | 500 | 2.47 |
2 | 750 | 3.25 |
3 | 1000 | 3.62 |
4 | 1200 | 4.12 |
5 | 1500 | 3.98 |
6 | 1800 | 3.87 |
Mode Number (n) | w [nm] | P TE [%] | P TE [%] | P TE [%] |
---|---|---|---|---|
0 | 500 | 90.0 | 5.1 | 4.9 |
0 | 750 | 91.4 | 3.9 | 4.6 |
0 | 1000 | 91.8 | 3.6 | 4.6 |
0 | 1200 | 91.9 | 3.5 | 4.6 |
0 | 1500 | 92.0 | 3.5 | 4.5 |
0 | 1800 | 92.0 | 3.5 | 4.5 |
Mode Number (n) | w [nm] | P TE [%] | P TE [%] | P TE [%] |
1 | 500 | 75.4 | 16.4 | 8.2 |
2 | 750 | 76.4 | 15.1 | 8.5 |
3 | 1000 | 77.0 | 14.3 | 8.7 |
4 | 1200 | 72.2 | 16.2 | 11.6 |
5 | 1500 | 77.0 | 12.5 | 10.5 |
6 | 1800 | 81.9 | 10.7 | 7.4 |
Sensor Characteristics | [rad·RIUμm] | Reference, Year |
---|---|---|
4th order SiN channel WG | 1.787 | This work |
BiMW SiN rib WG | 0.849 | Zinoviev et al., 2011 [27] |
BiMW SiN rib WG with grating couplers | 0.963 | Duval et al., 2012 [30] |
TriMW SiN channel WG | 1.131 | Ramirez et al., 2015 [28] |
Grating-assisted TriMW ma-P 1205 channel WG | 0.859 | Liang et al., 2018 [29] |
Taper-coupled BiMW SiN rib WG | 0.901 | Grajales et al., 2019 [16] |
TriMW SU-8 channel WG with DSMW excitation | 0.62 | Ebihara et al., 2019 [18] |
w [nm] | w [m] | L [m] | g [nm] | L [m] | g [nm] |
---|---|---|---|---|---|
110 | 1.2 | 6.5 | 300 | 17.4 | 210 |
Mode | Power [%] |
---|---|
TE | 47.93 |
TE | 0.00 |
TE | 0.03 |
TE | 0.00 |
TE | 47.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isayama, Y.H.; Hernández-Figueroa, H.E. High-Order Multimode Waveguide Interferometer for Optical Biosensing Applications. Sensors 2021, 21, 3254. https://doi.org/10.3390/s21093254
Isayama YH, Hernández-Figueroa HE. High-Order Multimode Waveguide Interferometer for Optical Biosensing Applications. Sensors. 2021; 21(9):3254. https://doi.org/10.3390/s21093254
Chicago/Turabian StyleIsayama, Yuri Hayashi, and Hugo Enrique Hernández-Figueroa. 2021. "High-Order Multimode Waveguide Interferometer for Optical Biosensing Applications" Sensors 21, no. 9: 3254. https://doi.org/10.3390/s21093254
APA StyleIsayama, Y. H., & Hernández-Figueroa, H. E. (2021). High-Order Multimode Waveguide Interferometer for Optical Biosensing Applications. Sensors, 21(9), 3254. https://doi.org/10.3390/s21093254