Improvement of Performance for Raman Assisted BOTDR by Analyzing Brillouin Gain Spectrum
Abstract
:1. Introduction
2. Fundamentals of the System
2.1. First-Order Raman Assisted BOTDR Theory
2.2. Simplified Partitioned BGS Analysis Method
3. Experimental Setup and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horiguchi, T.; Shimizu, K.; Kurashima, T.; Tateda, M.; Koyamada, Y. Development of a Distributed Sensing Technique Using Brillouin Scattering. J. Lightwave Technol. 1995, 13, 1296–1302. [Google Scholar] [CrossRef]
- Bai, Q.; Wang, Q.; Wang, D.; Wang, Y.; Gao, Y.; Zhang, H.; Zhang, M.; Jin, B. Recent Advances in Brillouin Optical Time Domain Reflectometry. Sensors 2019, 19, 1862. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Li, Y.; Xu, Z.; Yang, Z.; Lü, A. On-line monitoring system of 110 kV submarine cable based on BOTDR. Sens. Actuators A Phys. 2014, 216, 28–35. [Google Scholar] [CrossRef]
- Feng, X.; Wu, W.J.; Li, X.Y.; Zhang, X.W.; Zhou, J. Experimental investigations on detecting lateral buckling for subsea pipelines with distributed fiber optic sensors. Smart Struct. Syst. 2015, 15, 245–258. [Google Scholar] [CrossRef]
- Seo, H. Monitoring of CFA pile test using three dimensional laser scanning and distributed fiber optic sensors. Opt. Lasers Eng. 2020, 130, 106089. [Google Scholar] [CrossRef]
- Yuan, Q.; Chai, J.; Ren, Y.W.; Liu, Y.L. The Characterization Pattern of Overburden Deformation with Distributed Optical Fiber Sensing: An Analogue Model Test and Extensional Analysis. Sensors 2020, 20, 7215. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.A.; Thévenaz, L. Modeling and evaluating the performance of Brillouin distributed optical fiber sensors. Opt. Express 2013, 21, 31347–31366. [Google Scholar] [CrossRef]
- Soto, M.A.; Bolognini, G.; Di Pasquale, F. Analysis of optical pulse coding in spontaneous Brillouin-based distributed temperature sensors. Opt. Express 2008, 16, 19097–19111. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.S.; Soto, M.A.; Thevenaz, L. Increasing robustness of bipolar pulse coding in Brillouin distributed fiber sensors. Opt. Express 2016, 24, 586–597. [Google Scholar] [CrossRef] [Green Version]
- Horiguchi, T.; Masui, Y.; Zan, M.S.D. Analysis of Phase-Shift Pulse Brillouin Optical Time-Domain Reflectometry. Sensors 2019, 19, 1497. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.Q.; Ye, Q.; Pan, Z.Q.; Cai, H.W.; Qu, R.H.; Yang, Z.M. Effects of modulated pulse format on spontaneous Brillouin scattering spectrum and BOTDR sensing system. Opt. Laser Technol. 2013, 46, 37–41. [Google Scholar] [CrossRef]
- Bashan, G.; Diamandi, H.H.; London, Y.; Preter, E.; Zadok, A. Optomechanical time-domain reflectometry. Nat. Commun. 2018, 9, 2991. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Jiang, H.; Wang, Z.Q.; Ye, S.B.; Shang, X.J.; Li, T.; Tang, L.J. Spatial resolution enhancement of DFT-BOTDR with high-order self-convolution window. Opt. Fiber Technol. 2020, 57, 102188. [Google Scholar] [CrossRef]
- Wang, F.; Zhan, W.W.; Zhang, X.P.; Lu, Y.G. Improvement of Spatial Resolution for BOTDR by Iterative Subdivision Method. J. Lightwave Technol. 2013, 31, 3663–3667. [Google Scholar] [CrossRef]
- Murayama, H.; Kageyama, K.; Shimada, A.; Nishiyama, A. Improvement of spatial resolution for strain measurements by analyzing Brillouin gain spectrum. In Proceedings of the 17th International Conference on Optical Fibre Sensors, Bruges, Belgium, 23–27 May 2005; Volume 5855, pp. 551–554. [Google Scholar]
- Soto, M.A.; Bolognini, G.; Di Pasquale, F. Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification. Opt. Express 2011, 19, 4444–4457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Lopez, S.; Alcon-Camas, M.; Rodriguez, F.; Corredera, P.; Ania-Castanon, J.D.; Thevenaz, L.; Gonzalez-Herraez, M. Brillouin optical time-domain analysis assisted by second-order Raman amplification. Opt. Express 2010, 18, 18769–18778. [Google Scholar] [CrossRef] [Green Version]
- Alahbabi, M.N.; Cho, Y.T.; Newson, T.P. 150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification. J. Opt. Soc. Am. B—Opt. Phys. 2005, 22, 1321–1324. [Google Scholar] [CrossRef]
- Song, M.P.; Xia, Q.L.; Feng, K.B.; Lu, Y.; Yin, C. 100 km Brillouin optical time-domain reflectometer based on unidirectionally pumped Raman amplification. Opt. Quantum Electron. 2016, 48, 30. [Google Scholar] [CrossRef]
- Wu, H.; Wan, Y.Y.; Tang, M.; Chen, Y.J.; Zhao, C.; Liao, R.L.; Chang, Y.Q.; Fu, S.N.; Shum, P.P.; Liu, D.M. Real-Time Denoising of Brillouin Optical Time Domain Analyzer With High Data Fidelity Using Convolutional Neural Networks. J. Lightwave Technol. 2019, 37, 2648–2653. [Google Scholar] [CrossRef]
- Nuno, J.; Martins, H.F.; Martin-Lopez, S.; Ania-Castanon, J.D.; Gonzalez-Herraez, M. Distributed Sensors Assisted by Modulated First-Order Raman Amplification. J. Lightwave Technol. 2021, 39, 328–335. [Google Scholar] [CrossRef]
- Maughan, S.M.; Kee, H.H.; Newson, T.P. Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter. Meas. Sci. Technol. 2001, 12, 834–842. [Google Scholar] [CrossRef]
- Alem, M.; Soto, M.A.; Tur, M.; Thevenaz, L. Analytical expression and experimental validation of the Brillouin gain spectral broadening at any sensing spatial resolution. In Proceedings of the 2017 25th International Conference on Optical Fiber Sensors (OFS), Jeju, Korea, 24–28 April 2017. [Google Scholar]
Results | Direct Lorentzian Curve Fitting | Lorentzian Fitting after Partitioned BGS Analysis |
---|---|---|
Mean BFS amplitude (GHz) | 11.2778 | 11.2963 |
Corresponding temperature (°C) | 55.8 | 74.3 |
Accuracy (°C) | 24.2 | 5.7 |
Spatial resolution (m) | 11.2 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Sun, J.; Jiao, W.; Kai, L. Improvement of Performance for Raman Assisted BOTDR by Analyzing Brillouin Gain Spectrum. Sensors 2022, 22, 116. https://doi.org/10.3390/s22010116
Huang Q, Sun J, Jiao W, Kai L. Improvement of Performance for Raman Assisted BOTDR by Analyzing Brillouin Gain Spectrum. Sensors. 2022; 22(1):116. https://doi.org/10.3390/s22010116
Chicago/Turabian StyleHuang, Qiang, Junqiang Sun, Wenting Jiao, and Li Kai. 2022. "Improvement of Performance for Raman Assisted BOTDR by Analyzing Brillouin Gain Spectrum" Sensors 22, no. 1: 116. https://doi.org/10.3390/s22010116
APA StyleHuang, Q., Sun, J., Jiao, W., & Kai, L. (2022). Improvement of Performance for Raman Assisted BOTDR by Analyzing Brillouin Gain Spectrum. Sensors, 22(1), 116. https://doi.org/10.3390/s22010116