Time Series Classification with InceptionFCN
Abstract
:1. Introduction
- Inception block modification—we modified the existing Inception module by finetuning the parameters for the convolutional and max-pooling layers. We created narrower convolutional layers than the original Inception block by comprising more kernels per layer. These changes speed up the training due to the decrease in the number of parameters and FLOPs [6].
- Aggregation—we combined the deeper FCN block with the Inception module to boost the classification performance. We sequentially trained the initial time-series features on Inception and on FCN modules, then we merged the output with adding layers at the end of the network. Although each contribution is easy to be implemented, we believe this is the first work including the combination of both methods.
2. Related Work
2.1. UCR Archive
2.2. Machine-Learning-Based Classification Algorithms
- Distance (K-means with dynamic time warping);
- Interval (TimeSeriesForest);
- Dictionary (BOSS, cBOSS).
2.3. Deep-Learning-Based TSC
- Multi-layer perceptron (MLP);
- Fully convolutional network (FCN);
- Residual network (ResNet);
- Inception module added networks (InceptionTime).
2.3.1. Multi-Layer Perceptron for Classification
2.3.2. Fully Convolutional Networks for Classification
2.3.3. Residual Networks for Classification
2.3.4. InceptionTime for Classification
3. Methodology
3.1. Network Architecture
3.2. Training the Network with UCR Archive
4. Results
4.1. Evaluation Metric
4.2. Numerical Results and Comparison
4.3. Wilcoxon Signed-Ranks Test
4.4. Critical Difference Calculation for Multiple Classifiers
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- LeCun, Y.; Bottou, L.; Orr, G.B.; Muller, K.R. Efficient backpop. In Neural Networks: Tricks of the Trade; NIPS Workshop; Springer: New York, NY, USA, 1998; pp. 9–50. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the NIPS’12: The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 1, pp. 1097–1105. [Google Scholar]
- Chen, Y.; Keogh, E.; Hu, B.; Begum, N.; Bagnall, A.; Mueen, A.; Batista, G. The UCR Time Series Classification Archive. Available online: www.cs.ucr.edu/~eamonn/time_series_data (accessed on 11 October 2021).
- Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.-A. Deep learning for time series classification: A review. Data Min. Knowl. Discov. 2019, 33, 917–963. [Google Scholar] [CrossRef] [Green Version]
- Ismail Fawaz, H.; Lucas, B.; Forestier, G.; Pelletier, C.; Schmidt, D.F.; Weber, J.; Webb, G.I.; Idoumghar, L.; Muller, P.-A.; Petitjean, F. InceptionTime: Finding AlexNet for time series classification. Data Min. Knowl. Discov. 2020, 34, 1936–1962. [Google Scholar] [CrossRef]
- Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv 2016, arXiv:1605.07146. [Google Scholar]
- Hoang, A.D.; Bagnal, A.; Kamgar, K.; Yeh, C.C.M.; Zhu, Y.; Gharghabi, S.; Ratanamahatana, C.A.; Keogh, E. The UCR Time series archive. arXiv 2018, arXiv:1810.07758. [Google Scholar]
- Hu, B.; Chen, Y.; Keogh, E. Time Series Classification under More Realistic Assumptions. In Proceedings of the SIAM International Conference on Data Mining (SDM), Austin, TX, USA, 2–4 May 2013; pp. 578–586. [Google Scholar]
- Minaar, A. Python Time-Series K-NN Classification and K-Means Clustering Using Dynamic Time Warping. Available online: http://alexminnaar.com/2014/04/16/Time-Series-Classification-and-Clustering-with-Python.html (accessed on 16 April 2014).
- Rakthanmanon, T.; Campana, B.; Mueen, A.; Batista, G.; Westover, B.; Zhu, Q.; Zakaria, J.; Keogh, E. Searching and Mining Trillions of Time Series Subsequences Under Dynamic Time Warping. In Proceedings of the KDD’12: 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; pp. 262–270. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Runger, G.; Tuv, E.; Vladimir, M. A Time Series Forest for Classification and Feature Extraction. arXiv 2013, arXiv:1302.2277v2. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, P. The BOSS is concerned with time series classification in the presence of noise. Data Min. Knowl. Discov. 2015, 29, 1505–1530. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, W.; Oates, Y. Time series classification from scratch with deep neural networks: A strong baseline. arXiv 2016, arXiv:1611.06455v4. [Google Scholar]
- Baydadaev, S.; Usmankhujaev, S.; Kwon, J.; Kim, K.-S. Impulse Classification Network for Video Head Impulse Test. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 240–243. [Google Scholar] [CrossRef]
- Karimi-Bidhendi, S.; Munshi, F.; Munshi, A. Scalable Classification of Univariate and Multivariate Time Series. In Proceedings of the IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 1598–1605. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, J.; Han, Y. Understanding the effective receptive field in semantic image segmentation. Multimed. Tools Appl. 2018, 77, 22159–22171. [Google Scholar] [CrossRef]
- Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures, 2nd ed.; Taylor & Francis: Boca Raton, FL, USA, 2000. [Google Scholar]
- Demsar, J. Statistical Comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
- Bifet, A.; Morales, G.; Read, J.; Holmes, G.; Pfahringer, B. Efficient Online Evaluation of Big Data Stream Classifiers. In Proceedings of the KDD’15: The ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 10–13 August 2015; pp. 59–68. [Google Scholar] [CrossRef] [Green Version]
- Karim, F.; Majumdar, S.; Darabi, H.; Chen, S. LSTM fully convolutional networks for time series classification. IEEE Access 2018, 6, 1662–1669. [Google Scholar] [CrossRef]
- Bonaccorso, G.; Fandango, A.; Shanmugamani, R. Python: Advanced Guide to Artificial Intelligence; Packt Publishing: Birmingham, UK, 2018; ISBN 9781789957211. [Google Scholar]
Entity | Value |
---|---|
Batch size | 64 |
Bottleneck tensor size | 64 |
Number of inception blocks | 3 |
Number of epochs | 1600 |
Kernel sizes for Inception block | [10, 20] |
Kernel sizes for FCN block | [1,3,3,5,5,1] |
Learning rate | |
Optimizer | Adam |
Dropout rate | 0.5 |
Dataset | Ours | InceptionTime | MLP | FCN | ResNet |
---|---|---|---|---|---|
50words | 0.771 (0.005) | 0.829 (0.003) | 0.684 (0.006) | 0.627 (0.007) | 0.74 (0.005) |
Adiac | 0.816 (0.005) | 0.821 (0.005) | 0.397 (0.016) | 0.844 (0.004) | 0.829 (0.005) |
ArrowHead | 0.88 (0.04) | 0.829 (0.057) | 0.778 (0.074) | 0.843 (0.052) | 0.845 (0.052) |
Beef | 0.767 (0.047) | 0.7 (0.06) | 0.72 (0.056) | 0.697 (0.061) | 0.753 (0.049) |
BeetleFly | 0.9 (0.05) | 0.85 (0.075) | 0.87 (0.065) | 0.86 (0.07) | 0.85 (0.075) |
BirdChicken | 1 (0) | 1 (0) | 0.775 (0.113) | 0.955 (0.023) | 0.885 (0.058) |
Car | 0.902 (0.025) | 0.883 (0.029) | 0.767 (0.058) | 0.905 (0.024) | 0.925 (0.019) |
CBF | 1 (0) | 0.999 (0) | 0.872 (0.043) | 0.994 (0.002) | 0.995 (0.002) |
Chlorine Concentration | 0.873 (0.042) | 0.87 (0.043) | 0.802 (0.066) | 0.814 (0.062) | 0.844 (0.052) |
CinC_ECG_torso | 0.857 (0.036) | 0.854 (0.037) | 0.84 (0.04) | 0.824 (0.044) | 0.826 (0.044) |
Coffee | 1 (0) | 1 (0) | 0.996 (0.002) | 1 (0) | 1 (0) |
Computers | 0.819 (0.091) | 0.796 (0.102) | 0.563 (0.219) | 0.822 (0.089) | 0.815 (0.093) |
Cricket_X | 0.835 (0.014) | 0.826 (0.015) | 0.591 (0.034) | 0.792 (0.017) | 0.791 (0.017) |
Cricket_Y | 0.853 (0.012) | 0.851 (0.012) | 0.6 (0.033) | 0.787 (0.018) | 0.803 (0.016) |
Cricket_Z | 0.834 (0.014) | 0.851 (0.012) | 0.617 (0.032) | 0.811 (0.016) | 0.812 (0.016) |
DiatomSizeReduction | 1 (0) | 0.944 (0.014) | 0.91 (0.023) | 0.313 (0.172) | 0.301 (0.175) |
DistalPhalanxOutlineAgeGroup | 0.81 (0.063) | 0.795 (0.068) | 0.657 (0.114) | 0.71 (0.097) | 0.717 (0.094) |
DistalPhalanxOutlineCorrect | 0.798 (0.101) | 0.788 (0.106) | 0.726 (0.137) | 0.76 (0.12) | 0.771 (0.115) |
DistalPhalanxTW | 0.765 (0.039) | 0.74 (0.043) | 0.617 (0.064) | 0.69 (0.052) | 0.665 (0.056) |
Earthquakes | 0.804 (0.098) | 0.792 (0.104) | 0.717 (0.142) | 0.727 (0.137) | 0.712 (0.144) |
ECG200 | 0.94 (0.03) | 0.93 (0.035) | 0.916 (0.042) | 0.889 (0.056) | 0.874 (0.063) |
ECG5000 | 0.938 (0.012) | 0.941 (0.012) | 0.929 (0.014) | 0.94 (0.012) | 0.934 (0.013) |
ECGFiveDays | 1 (0) | 1 (0) | 0.97 (0.015) | 0.987 (0.007) | 0.975 (0.013) |
ElectricDevices | 0.734 (0.038) | 0.702 (0.043) | 0.592 (0.058) | 0.702 (0.043) | 0.729 (0.039) |
FaceAll | 0.868 (0.009) | 0.798 (0.014) | 0.793 (0.015) | 0.945 (0.004) | 0.839 (0.012) |
FaceFour | 0.955 (0.011) | 0.955 (0.011) | 0.84 (0.04) | 0.928 (0.018) | 0.955 (0.011) |
FacesUCR | 0.956 (0.003) | 0.962 (0.003) | 0.833 (0.012) | 0.946 (0.004) | 0.955 (0.003) |
FISH | 0.994 (0.001) | 0.983 (0.002) | 0.848 (0.022) | 0.958 (0.006) | 0.979 (0.003) |
FordA | 0.94 (0.03) | 0.949 (0.026) | 0.73 (0.135) | 0.904 (0.048) | 0.92 (0.04) |
FordB | 0.936 (0.032) | 0.932 (0.034) | 0.603 (0.199) | 0.878 (0.061) | 0.913 (0.044) |
Gun_Point | 1 (0) | 1 (0) | 0.927 (0.037) | 1 (0) | 0.991 (0.005) |
Ham | 0.745 (0.128) | 0.743 (0.129) | 0.691 (0.155) | 0.718 (0.141) | 0.757 (0.122) |
HandOutlines | 0.964 (0.018) | 0.893 (0.054) | 0.918 (0.041) | 0.806 (0.097) | 0.911 (0.045) |
Haptics | 0.565 (0.087) | 0.552 (0.09) | 0.433 (0.113) | 0.48 (0.104) | 0.519 (0.096) |
Herring | 0.61 (0.195) | 0.672 (0.164) | 0.528 (0.236) | 0.608 (0.196) | 0.619 (0.191) |
InlineSkate | 0.502 (0.071) | 0.453 (0.078) | 0.337 (0.095) | 0.339 (0.094) | 0.373 (0.09) |
InsectWingbeatSound | 0.639 (0.033) | 0.629 (0.034) | 0.607 (0.036) | 0.393 (0.055) | 0.507 (0.045) |
ItalyPowerDemand | 0.969 (0.016) | 0.965 (0.018) | 0.954 (0.023) | 0.961 (0.02) | 0.963 (0.019) |
LargeKitchenAppliances | 0.901 (0.033) | 0.893 (0.036) | 0.473 (0.176) | 0.902 (0.033) | 0.9 (0.033) |
Lighting2 | 0.742 (0.129) | 0.836 (0.082) | 0.67 (0.165) | 0.739 (0.131) | 0.77 (0.115) |
Lighting7 | 0.863 (0.02) | 0.822 (0.025) | 0.63 (0.053) | 0.827 (0.025) | 0.845 (0.022) |
MALLAT | 0.964 (0.004) | 0.963 (0.005) | 0.918 (0.01) | 0.967 (0.004) | 0.972 (0.004) |
Meat | 0.952 (0.016) | 0.933 (0.022) | 0.897 (0.034) | 0.853 (0.049) | 0.968 (0.011) |
MedicalImages | 0.765 (0.024) | 0.78 (0.022) | 0.721 (0.028) | 0.779 (0.022) | 0.77 (0.023) |
MiddlePhalanxOutlineAgeGroup | 0.735 (0.088) | 0.725 (0.092) | 0.531 (0.156) | 0.553 (0.149) | 0.569 (0.144) |
MiddlePhalanxOutlineCorrect | 0.842 (0.079) | 0.777 (0.112) | 0.77 (0.115) | 0.801 (0.1) | 0.809 (0.096) |
MiddlePhalanxTW | 0.586 (0.069) | 0.596 (0.067) | 0.534 (0.078) | 0.512 (0.081) | 0.484 (0.086) |
MoteStrain | 0.943 (0.029) | 0.895 (0.053) | 0.858 (0.071) | 0.937 (0.032) | 0.928 (0.036) |
NonInvasiveFatalECG_Thorax1 | 0.952 (0.001) | 0.956 (0.001) | 0.916 (0.002) | 0.956 (0.001) | 0.945 (0.001) |
NonInvasiveFatalECG_Thorax2 | 0.951 (0.001) | 0.961 (0.001) | 0.917 (0.002) | 0.953 (0.001) | 0.946 (0.001) |
OliveOil | 0.85 (0.038) | 0.7 (0.075) | 0.667 (0.083) | 0.723 (0.069) | 0.83 (0.043) |
OSULeaf | 0.987 (0.002) | 0.909 (0.015) | 0.557 (0.074) | 0.977 (0.004) | 0.979 (0.004) |
PhalangesOutlinesCorrect | 0.824 (0.088) | 0.846 (0.077) | 0.735 (0.133) | 0.82 (0.09) | 0.839 (0.081) |
Phoneme | 0.341 (0.017) | 0.322 (0.017) | 0.096 (0.023) | 0.325 (0.017) | 0.334 (0.017) |
Plane | 1 (0) | 1 (0) | 0.978 (0.003) | 1 (0) | 1 (0) |
ProximalPhalanxOutlineAgeGroup | 0.851 (0.05) | 0.834 (0.055) | 0.856 (0.048) | 0.831 (0.056) | 0.853 (0.049) |
ProximalPhalanxOutlineCorrect | 0.921 (0.04) | 0.921 (0.04) | 0.733 (0.134) | 0.903 (0.049) | 0.921 (0.04) |
ProximalPhalanxTW | 0.802 (0.033) | 0.77 (0.038) | 0.767 (0.039) | 0.767 (0.039) | 0.78 (0.037) |
RefrigerationDevices | 0.552 (0.149) | 0.52 (0.16) | 0.379 (0.207) | 0.508 (0.164) | 0.525 (0.158) |
ScreenType | 0.61 (0.13) | 0.581 (0.14) | 0.403 (0.199) | 0.625 (0.125) | 0.622 (0.126) |
ShapeletSim | 0.994 (0.003) | 0.956 (0.022) | 0.503 (0.249) | 0.724 (0.138) | 0.779 (0.111) |
ShapesAll | 0.912 (0.001) | 0.918 (0.001) | 0.771 (0.004) | 0.895 (0.002) | 0.921 (0.001) |
SmallKitchenAppliances | 0.755 (0.082) | 0.779 (0.074) | 0.371 (0.21) | 0.783 (0.072) | 0.786 (0.071) |
SonyAIBORobotSurface | 0.929 (0.035) | 0.887 (0.057) | 0.672 (0.164) | 0.96 (0.02) | 0.958 (0.021) |
SonyAIBORobotSurfaceII | 0.987 (0.007) | 0.962 (0.019) | 0.834 (0.083) | 0.979 (0.011) | 0.978 (0.011) |
StarLightCurves | 0.978 (0.007) | 0.977 (0.008) | 0.949 (0.017) | 0.961 (0.013) | 0.972 (0.009) |
Strawberry | 0.972 (0.014) | 0.966 (0.017) | 0.961 (0.02) | 0.972 (0.014) | 0.981 (0.01) |
SwedishLeaf | 0.973 (0.002) | 0.968 (0.002) | 0.851 (0.01) | 0.969 (0.002) | 0.956 (0.003) |
Symbols | 0.985 (0.003) | 0.977 (0.004) | 0.832 (0.028) | 0.955 (0.008) | 0.906 (0.016) |
synthetic_control | 0.998 (0) | 0.997 (0.001) | 0.976 (0.004) | 0.985 (0.003) | 0.998 (0) |
ToeSegmentation1 | 0.968 (0.016) | 0.969 (0.016) | 0.583 (0.209) | 0.961 (0.02) | 0.963 (0.019) |
ToeSegmentation2 | 0.947 (0.026) | 0.954 (0.023) | 0.745 (0.128) | 0.88 (0.06) | 0.906 (0.047) |
Trace | 1 (0) | 1 (0) | 0.807 (0.048) | 1 (0) | 1 (0) |
Two_Patterns | 1 (0) | 1 (0) | 0.946 (0.014) | 0.871 (0.032) | 1 (0) |
TwoLeadECG | 1 (0) | 0.996 (0.002) | 0.762 (0.119) | 1 (0) | 1 (0) |
uWaveGestureLibrary_X | 0.811 (0.024) | 0.815 (0.023) | 0.767 (0.029) | 0.754 (0.031) | 0.78 (0.028) |
uWaveGestureLibrary_Y | 0.722 (0.035) | 0.753 (0.031) | 0.698 (0.038) | 0.639 (0.045) | 0.67 (0.041) |
uWaveGestureLibrary_Z | 0.752 (0.031) | 0.759 (0.03) | 0.697 (0.038) | 0.726 (0.034) | 0.75 (0.031) |
UWaveGestureLibraryAll | 0.887 (0.014) | 0.941 (0.007) | 0.955 (0.006) | 0.817 (0.023) | 0.86 (0.018) |
wafer | 1 (0) | 0.999 (0.001) | 0.996 (0.002) | 0.997 (0.002) | 0.999 (0.001) |
Wine | 0.744 (0.128) | 0.611 (0.195) | 0.565 (0.218) | 0.587 (0.207) | 0.744 (0.128) |
WordsSynonyms | 0.765 (0.009) | 0.724 (0.011) | 0.598 (0.016) | 0.564 (0.017) | 0.622 (0.015) |
Worms | 0.667 (0.067) | 0.652 (0.07) | 0.457 (0.109) | 0.765 (0.047) | 0.791 (0.042) |
WormsTwoClass | 0.748 (0.126) | 0.713 (0.144) | 0.601 (0.2) | 0.726 (0.137) | 0.747 (0.127) |
yoga | 0.898 (0.051) | 0.896 (0.052) | 0.855 (0.073) | 0.839 (0.081) | 0.87 (0.065) |
Winner | 52 | 26 | 2 | 12 | 15 |
InceptionFCN (Ours) | InceptionTime | |
---|---|---|
Number of parameters (average) | 198,432 | 423,222 |
FLOPs (average) | 135 M | 309 M |
Dataset | Ours | InceptionTime | Difference | Rank |
---|---|---|---|---|
50words | 0.771 | 0.829 | 0.058 | 76 |
Adiac | 0.816 | 0.821 | 0.005 | 27.5 |
ArrowHead | 0.88 | 0.829 | −0.051 | 73 |
Beef | 0.767 | 0.7 | −0.067 | 79 |
BeetleFly | 0.9 | 0.85 | −0.05 | 72 |
BirdChicken | 1 | 1 | 0 | 5 |
Car | 0.902 | 0.883 | −0.019 | 53 |
CBF | 1 | 0.999 | −0.001 | 15 |
ChlorineConcentration | 0.873 | 0.87 | −0.003 | 20 |
CinC_ECG_torso | 0.857 | 0.854 | −0.003 | 20 |
Coffee | 1 | 1 | 0 | 5 |
Computers | 0.819 | 0.796 | −0.023 | 56 |
Cricket_X | 0.835 | 0.826 | −0.009 | 36.5 |
Cricket_Y | 0.853 | 0.851 | −0.002 | 17 |
Cricket_Z | 0.834 | 0.851 | 0.017 | 50.5 |
DiatomSizeReduction | 1 | 0.944 | −0.056 | 75 |
DistalPhalanxOutlineAgeGroup | 0.81 | 0.795 | −0.015 | 48 |
DistalPhalanxOutlineCorrect | 0.798 | 0.788 | −0.01 | 40.5 |
DistalPhalanxTW | 0.765 | 0.74 | −0.025 | 58.5 |
Earthquakes | 0.804 | 0.792 | −0.012 | 45 |
ECG200 | 0.94 | 0.93 | −0.01 | 40.5 |
ECG5000 | 0.938 | 0.941 | 0.003 | 20 |
ECGFiveDays | 1 | 1 | 0 | 5 |
ElectricDevices | 0.734 | 0.702 | −0.032 | 63 |
FaceAll | 0.868 | 0.798 | −0.07 | 80 |
FaceFour | 0.955 | 0.955 | 0 | 5 |
FacesUCR | 0.956 | 0.962 | 0.006 | 30 |
FISH | 0.994 | 0.983 | −0.011 | 44 |
FordA | 0.94 | 0.949 | 0.009 | 36.5 |
FordB | 0.936 | 0.932 | −0.004 | 24 |
Gun_Point | 1 | 1 | 0 | 5 |
Ham | 0.745 | 0.743 | −0.002 | 17 |
HandOutlines | 0.964 | 0.893 | −0.071 | 81 |
Haptics | 0.565 | 0.552 | −0.013 | 46 |
Herring | 0.61 | 0.672 | 0.062 | 77 |
InlineSkate | 0.502 | 0.453 | −0.049 | 71 |
InsectWingbeatSound | 0.639 | 0.629 | −0.01 | 40.5 |
ItalyPowerDemand | 0.969 | 0.965 | −0.004 | 24 |
LargeKitchenAppliances | 0.901 | 0.893 | −0.008 | 34.5 |
Lighting2 | 0.742 | 0.836 | 0.094 | 83 |
Lighting7 | 0.863 | 0.822 | −0.041 | 67.5 |
MALLAT | 0.964 | 0.963 | −0.001 | 15 |
Meat | 0.952 | 0.933 | −0.019 | 53 |
MedicalImages | 0.765 | 0.78 | 0.015 | 48 |
MiddlePhalanxOutlineAgeGroup | 0.735 | 0.725 | −0.01 | 40.5 |
MiddlePhalanxOutlineCorrect | 0.842 | 0.777 | −0.065 | 78 |
MiddlePhalanxTW | 0.586 | 0.596 | 0.01 | 40.5 |
MoteStrain | 0.943 | 0.895 | −0.048 | 70 |
NonInvasiveFatalECG_Thorax1 | 0.952 | 0.956 | 0.004 | 24 |
NonInvasiveFatalECG_Thorax2 | 0.951 | 0.961 | 0.01 | 40.5 |
OliveOil | 0.85 | 0.7 | −0.15 | 85 |
OSULeaf | 0.987 | 0.909 | −0.078 | 82 |
PhalangesOutlinesCorrect | 0.824 | 0.846 | 0.022 | 55 |
Phoneme | 0.341 | 0.322 | −0.019 | 53 |
Plane | 1 | 1 | 0 | 5 |
ProximalPhalanxOutlineAgeGroup | 0.851 | 0.834 | −0.017 | 50.5 |
ProximalPhalanxOutlineCorrect | 0.921 | 0.921 | 0 | 5 |
ProximalPhalanxTW | 0.802 | 0.77 | −0.032 | 63 |
RefrigerationDevices | 0.552 | 0.52 | −0.032 | 63 |
ScreenType | 0.61 | 0.581 | −0.029 | 60 |
ShapeletSim | 0.994 | 0.956 | −0.038 | 66 |
ShapesAll | 0.912 | 0.918 | 0.006 | 30 |
SmallKitchenAppliances | 0.755 | 0.779 | 0.024 | 57 |
SonyAIBORobotSurface | 0.929 | 0.887 | −0.042 | 69 |
SonyAIBORobotSurfaceII | 0.987 | 0.962 | −0.025 | 58.5 |
StarLightCurves | 0.978 | 0.977 | −0.001 | 15 |
Strawberry | 0.972 | 0.966 | −0.006 | 30 |
SwedishLeaf | 0.973 | 0.968 | −0.005 | 27.5 |
Symbols | 0.985 | 0.977 | -0.008 | 34.5 |
synthetic_control | 0.998 | 0.997 | −0.001 | 15 |
ToeSegmentation1 | 0.968 | 0.969 | 0.001 | 15 |
ToeSegmentation2 | 0.947 | 0.954 | 0.007 | 32.5 |
Trace | 1 | 1 | 0 | 5 |
Two_Patterns | 1 | 1 | 0 | 5 |
TwoLeadECG | 1 | 0.996 | −0.004 | 24 |
uWaveGestureLibrary_X | 0.811 | 0.815 | 0.004 | 24 |
uWaveGestureLibrary_Y | 0.722 | 0.753 | 0.031 | 61 |
uWaveGestureLibrary_Z | 0.752 | 0.759 | 0.007 | 32.5 |
UWaveGestureLibraryAll | 0.887 | 0.941 | 0.054 | 74 |
wafer | 1 | 0.999 | −0.001 | 15 |
Wine | 0.744 | 0.611 | −0.133 | 84 |
WordsSynonyms | 0.765 | 0.724 | −0.041 | 67.5 |
Worms | 0.667 | 0.652 | −0.015 | 48 |
WormsTwoClass | 0.748 | 0.713 | −0.035 | 65 |
yoga | 0.898 | 0.896 | −0.002 | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usmankhujaev, S.; Ibrokhimov, B.; Baydadaev, S.; Kwon, J. Time Series Classification with InceptionFCN. Sensors 2022, 22, 157. https://doi.org/10.3390/s22010157
Usmankhujaev S, Ibrokhimov B, Baydadaev S, Kwon J. Time Series Classification with InceptionFCN. Sensors. 2022; 22(1):157. https://doi.org/10.3390/s22010157
Chicago/Turabian StyleUsmankhujaev, Saidrasul, Bunyodbek Ibrokhimov, Shokhrukh Baydadaev, and Jangwoo Kwon. 2022. "Time Series Classification with InceptionFCN" Sensors 22, no. 1: 157. https://doi.org/10.3390/s22010157
APA StyleUsmankhujaev, S., Ibrokhimov, B., Baydadaev, S., & Kwon, J. (2022). Time Series Classification with InceptionFCN. Sensors, 22(1), 157. https://doi.org/10.3390/s22010157