Off-Resonance Gold Nanobone Films at Liquid Interface for SERS Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Gold Nanobones
2.3. Stability Assessment
2.4. Transmission Electron Microscopy
2.5. SERS Measurements in Dispersion and at Liquid Interface
3. Results and Discussion
3.1. Morphology and Optical Properties of Gold Nanorods and Nanobones
3.2. Stability of Gold Nanobones
3.3. SERS Performances of Off-Resonance GNBs and On-Resonance GNBs and GNRs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khlebtsov, B.N.; Khanadeev, V.A.; Burov, A.M.; Le Ru, E.C.; Khlebtsov, N.G. Reexamination of Surface-Enhanced Raman Scattering from Gold Nanorods as a Function of Aspect Ratio and Shape. J. Phys. Chem. C 2020, 124, 10647–10658. [Google Scholar] [CrossRef]
- Sivapalan, S.T.; Devetter, B.M.; Yang, T.K.; Dijk, T.; Schulmerich, M.V.; Carney, P.S.; Bhargava, R.; Murphy, C.J. Off-resonance surface-enhanced raman spectroscopy from gold nanorod suspensions as a function of aspect ratio: Not what we thought. ACS Nano 2013, 7, 2099–2105. [Google Scholar] [CrossRef] [Green Version]
- Știufiuc, G.F.; Toma, V.; Buse, M.; Mărginean, R.; Morar-Bolba, G.; Culic, B.; Tetean, R.; Leopold, N.; Pavel, I.; Lucaciu, C.M.; et al. Solid Plasmonic Substrates for Breast Cancer Detection by Means of SERS Analysis of Blood Plasma. Nanomaterials 2020, 10, 1212. [Google Scholar] [CrossRef]
- Pyrak, E.; Krajczewski, J.; Kowalik, A.; Kudelski, A.; Jaworska, A. Surface Enhanced Raman Spectroscopy for DNA Biosensors—How Far Are We? Molecules 2019, 24, 4423. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Leustean, L.; Inci, F.; Zheng, M.; Demirci, U.; Wang, S. Plasmonic-based platforms for diagnosis of infectious diseases at the point-of-care. Biotechnol. Adv. 2019, 37, 23. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Zhou, Z.; Chen, Z.; Tan, H. Optical Diagnostic Based on Functionalized Gold Nanoparticles. Int. J. Mol. Sci. 2019, 20, 4346. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wang, Y. Plasmonic Nanostructures as Surface-Enhanced Raman Scattering (SERS) Substrate for Protein Biomarker Sensing. In Nanoplasmonics-Fundamentals and Applications; Intech: Rijeka, Croatia, 2017; pp. 341–359. [Google Scholar]
- Murphy, C.J.; Sau, T.K.; Gole, A.M.; Orendorff, C.J.; Gao, J.; Gou, L.; Hunyadi, S.E.; Li, T. Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications. J. Phys. Chem. B 2005, 109, 13857–13870. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, D.; Liu, W.; Zhang, X.; Yu, S.; Liu, T.; Zhang, W.; Zhu, W.; Wang, J. Facile colorimetric method for simple and rapid detection of endotoxin based on counterion-mediated gold nanorods aggregation. Biosens. Bioelectron. 2014, 55, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, J.U.; Kim, S.; Song, S.; Sim, S.J.; Kim, H.; Lee, J.U.; Kim, S.; Song, S.; Sim, S.J. A nanoplasmonic Biosensor for Ultrasensitive detection of Alzhei-mer’s disease biomarker using a Chaotropic agent. ACS Sens. 2019, 4, 595–602. [Google Scholar] [CrossRef] [PubMed]
- D’Elia, V.; Rubio-Retama, J.; Ortega-Ojeda, F.E.; García-Ruiz, C.; Montalvo, G. Gold nanorods as SERS substrate for the ultratrace detection of cocaine in non-pretreated oral fluid samples. Colloids Surf. A 2018, 557, 43–50. [Google Scholar] [CrossRef]
- Alvarez-Puebla, R.A.; Zubarev, E.R.; Kotov, N.A.; Liz-marzán, L.M. Self-assembled nanorod supercrystals for ultrasensitive SERS diagnostics. Nano Today 2012, 7, 6–9. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Q.; Zhang, C. Synthesis of colloidal gold nanobones with tunable negative curvatures at end surface and their application in SERS. J. Nanopart. Res. 2017, 19, 363–376. [Google Scholar] [CrossRef]
- Ros, I.; Placido, T.; Amendola, V.; Marinzi, C.; Manfredi, N.; Comparelli, R.; Striccoli, M.; Agostiano, A.; Abbotto, A.; Pedron, D.; et al. SERS Properties of Gold Nanorods at Resonance with Molecular, Transverse, and Longitudinal Plasmon Excitations. Plasmonics 2014, 9, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Gou, L.; Murphy, C.J. Fine-Tuning the Shape of Gold Nanorods. Chem. Mater. 2005, 17, 3668–3672. [Google Scholar] [CrossRef]
- Xu, X.; Cortie, M.B. Shape Change and Color Gamut in Gold Nanorods, Dumbbells, and Dog Bones. Adv. Funct. Mater. 2006, 16, 2170–2176. [Google Scholar] [CrossRef]
- Cheng, J.; Ge, L.; Xiong, B.; He, Y. Investigation of pH Effect on Gold Nanorod Synthesis. J. Chin. Chem. Soc. 2011, 58, 822–827. [Google Scholar] [CrossRef]
- Thambi, V.; Kar, A.; Ghosh, P.; Paital, D.; Raj, A.; Gautam, S.; Khatua, S. Synthesis of Complex Nanoparticle Geometries via pH-Controlled Overgrowth of Gold Nanorods. ACS Omega 2019, 4, 13733–13739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, Z.; Xia, H.; Tao, X. Modulation of Localized Surface Plasmon Resonance of Nanostructured Gold Crystals by Tuning Their Tip Curvature with Assistance of Iodide and Silver (I) Ions. J. Phys. Chem. C 2011, 115, 7887–7895. [Google Scholar] [CrossRef]
- Lohse, S.E.; Murphy, C.J. The Quest for Shape Control: A History of Gold Nanorod Synthesis. Chem. Mater. 2013, 25, 1250–1261. [Google Scholar] [CrossRef]
- Han, H.S.; Song, J.; Hong, J.; Kim, D.; Kang, T. Immiscible Oil−Water Interface: Dual Function of Electrokinetic Concentration of Charged Molecules and Optical Detection with Interfacially Trapped Gold Nanorods. Anal. Chem. 2014, 86, 6160–6165. [Google Scholar] [CrossRef]
- Kim, K.; Han, H.S.; Choi, I.; Lee, C.; Hong, S.G.; Suh, S.H.; Lee, L.P.; Kang, T. Interfacial liquid-state surface-enhanced Raman spectroscopy. Nat. Commun. 2013, 4, 3181–3189. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Guo, S.; Chen, H.; Wang, E. Facile fabrication of large area of aggregated gold nanorods film for efficient surface-enhanced Raman scattering. J. Colloid Interface Sci. 2008, 318, 82–87. [Google Scholar] [CrossRef]
- Yun, S.; Oh, M.K.; Kim, S.K.; Park, S. Linker-Molecule-Free Gold Nanorod Films: Effect of Nanorod Size on Surface Enhanced Raman Scattering. J. Phys. Chem. C 2009, 113, 13551–13557. [Google Scholar] [CrossRef]
- Yun, S.; Park, Y.; Kim, S.K.; Park, S. Linker-Molecule-Free Gold Nanorod Layer-by-Layer Films for Surface-Enhanced Raman Scattering. Anal. Chem. 2007, 79, 8584–8589. [Google Scholar] [CrossRef] [PubMed]
- Velleman, L.; Scarabelli, L.; Sikdar, D.; Kornyshev, A.A.; Liz-Marzan, L.M.; Edel, J.B. Monitoring plasmon coupling and SERS enhancement through in situ nanoparticle spacing modulation. Faraday Discuss. 2017, 205, 67–83. [Google Scholar] [CrossRef]
- Liu, H.; Mao, M.; Meng, J.; Yang, L.; Liu, J. Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine. Anal. Chem. 2016, 88, 8145–8151. [Google Scholar] [CrossRef]
- Zhou, B.; Tang, X.; Ge, M.; Li, P.; Huang, X. Natural deposition strategy of interfacial self-assembled largescale densely packed monolayer film with ligand exchanged Au nanorods for in situ SERS drugs detection. Chemistry 2018, 24, 4092–4102. [Google Scholar] [CrossRef]
- Sau, T.K.; Murphy, C.J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20, 6414–6420. [Google Scholar] [CrossRef] [PubMed]
- Marinakos, S.M.; Chen, S.; Chilkoti, A. Plasmonic Detection of a Model Analyte in Serum by a Gold Nanorod Sensor. Anal. Chem. 2007, 79, 5278–5283. [Google Scholar] [CrossRef] [PubMed]
- John, C.L.; Strating, S.L.; Shephard, K.A.; Zhao, J.X. Reproducibly synthesize gold nanorods and maintain their stability. RSC Adv. 2013, 3, 10909–10918. [Google Scholar] [CrossRef]
- Tong, W.; Katz-boon, H.; Walsh, M.J.; Weyland, M.; Etheridge, J.; Funston, A.M. The evolution of size, shape, and surface morphology of gold nanorods. Chem. Commun. 2018, 54, 3022–3025. [Google Scholar] [CrossRef]
- Canonico-May, S.A.; Beavers, K.R.; Melvin, M.J.; Alkilany, A.M.; Duvall, C.L.; Stone, J.W. High conversion of HAuCl4 into gold nanorods: A re-seeding approach. J. Colloid Interface Sci. 2016, 463, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Bender, C.M.; Murphy, C.J. Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution. Langmuir 2003, 19, 9065–9070. [Google Scholar] [CrossRef]
- Majoube, M.; Henry, M. Fourier transform Raman and infrared and surface-enhanced Raman spectra for rhodamine 6G. Spectrochim. Acta 1991, 47, 1459–1466. [Google Scholar] [CrossRef]
- Orendorff, C.J.; Gole, A.; Sau, T.K.; Murphy, C.J. Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers: Sandwich Architecture and Nanoparticle Shape Dependence. Anal. Chem. 2005, 77, 3261–3266. [Google Scholar] [CrossRef]
- Lin, K.Q.; Yi, J.; Hu, S.; Liu, B.J.; Liu, J.Y.; Wang, X.; Ren, B. Size Effect on SERS of Gold Nanorods Demonstrated via Single Nanoparticle Spectroscopy. J. Phys. Chem. C 2016, 120, 20806–20813. [Google Scholar] [CrossRef]
- Khlebtsov, B.N.; Khanadeev, V.A.; Burov, A.M.; Nikolay, K.G. SERS response from gold nanorods and dumbbells. Opt. Nano-Technol. Biol. Med. 2020, 114570Y. [Google Scholar] [CrossRef]
Sample | A | B | C |
---|---|---|---|
Longitudinal SPR peak (nm) | 710 | 765 | 765 |
Middle SPR peak (nm) | 582 | 602 | - |
Media | Sample | Raman Intensity at 612 cm−1 (kcounts/mW·s) | RSD% |
---|---|---|---|
Colloidal dispersion | A | 0.000858 | ±2.43% |
B | 0.000401 | ±3.03% | |
C | 0.000139 | ±0.87% | |
Liquid interface | A | 0.014408 | ±4.56% |
B | 0.007078 | ±13.59% | |
C | 0.007661 | ±8.44% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moldovan, R.; Toma, V.; Iacob, B.-C.; Știufiuc, R.I.; Bodoki, E. Off-Resonance Gold Nanobone Films at Liquid Interface for SERS Applications. Sensors 2022, 22, 236. https://doi.org/10.3390/s22010236
Moldovan R, Toma V, Iacob B-C, Știufiuc RI, Bodoki E. Off-Resonance Gold Nanobone Films at Liquid Interface for SERS Applications. Sensors. 2022; 22(1):236. https://doi.org/10.3390/s22010236
Chicago/Turabian StyleMoldovan, Rebeca, Valentin Toma, Bogdan-Cezar Iacob, Rareș Ionuț Știufiuc, and Ede Bodoki. 2022. "Off-Resonance Gold Nanobone Films at Liquid Interface for SERS Applications" Sensors 22, no. 1: 236. https://doi.org/10.3390/s22010236
APA StyleMoldovan, R., Toma, V., Iacob, B. -C., Știufiuc, R. I., & Bodoki, E. (2022). Off-Resonance Gold Nanobone Films at Liquid Interface for SERS Applications. Sensors, 22(1), 236. https://doi.org/10.3390/s22010236