Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection
Abstract
:1. Introduction
2. Deterioration Level Estimation Based on Confabn
2.1. Attention Branch
2.2. Confidence-Aware Attention Mechanism
2.3. Perception Branch
2.4. Training of ConfABN
3. Experimental Results
3.1. Experimental Setting
3.2. Performance Evaluation and Discussion
3.2.1. Quantitative Evaluation
3.2.2. Qualitative Evaluation
3.2.3. Distribution of Confidence
3.2.4. Limitation and Future Work
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Association of State Highway and Transportation Officials. Bridging the Gap: Restoring and Rebuilding the Nation’s Bridges. 2008. Available online: https://www.infrastructureusa.org/wp-content/uploads/2010/08/bridgingthegap.pdf (accessed on 2 December 2021).
- White Paper on Land, Infrastructure, Transport and Tourism in Japan, 2017 (Online); Technical Report; Ministry of Land, Infrastructure Tourism, Transport and Tourism: Japan, 2018. Available online: https://www.mlit.go.jp/common/001269888.pdf (accessed on 2 December 2021).
- Agnisarman, S.; Lopes, S.; Madathil, K.C.; Piratla, K.; Gramopadhye, A. A survey of automation-enabled human-in-the-loop systems for infrastructure visual inspection. Autom. Constr. 2019, 97, 52–76. [Google Scholar] [CrossRef]
- Maeda, K.; Takahashi, S.; Ogawa, T.; Haseyama, M. Convolutional sparse coding-based deep random vector functional link network for distress classification of road structures. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 654–676. [Google Scholar] [CrossRef]
- Akahori, S.; Higashi, Y.; Masuda, A. Development of an aerial inspection robot with EPM and camera arm for steel structures. In Proceedings of the IEEE Region 10 Conference, Marina Bay Sands, Singapore, 22–25 November 2016; pp. 3542–3545. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 2020, 53, 5455–5516. [Google Scholar] [CrossRef] [Green Version]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Fukui, H.; Hirakawa, T.; Yamashita, T.; Fujiyoshi, H. Attention branch network: Learning of attention mechanism for visual explanation. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 10705–10714. [Google Scholar]
- Mori, K.; Fukui, H.; Murase, T.; Hirakawa, T.; Yamashita, T.; Fujiyoshi, H. Visual explanation by attention branch network for end-to-end learning-based self-driving. In Proceedings of the IEEE Intelligent Vehicles Symposium, Paris, France, 9–12 June 2019; pp. 1577–1582. [Google Scholar]
- Ogawa, N.; Maeda, K.; Ogawa, T.; Haseyama, M. Distress level classification of road infrastructures via CNN generating attention map. In Proceedings of the 2nd Global Conference on Life Sciences and Technologies, Kyoto, Japan, 10–12 March 2020; pp. 97–98. [Google Scholar]
- Ogawa, N.; Maeda, K.; Ogawa, T.; Haseyama, M. Correlation-aware attention branch network using multi-modal data for deterioration level estimation of infrastructures. In Proceedings of the IEEE International Conference on Image Processing, Anchorage, AK, USA, 19–22 September 2021. [Google Scholar]
- Magassouba, A.; Sugiura, K.; Kawai, H. Multimodal attention branch network for perspective-free sentence generation. In Proceedings of the Conference on Robot Learning, Cambridge, MA, USA, 16–18 November 2020; pp. 76–85. [Google Scholar]
- Mitsuhara, M.; Fukui, H.; Sakashita, Y.; Ogata, T.; Hirakawa, T.; Yamashita, T.; Fujiyoshi, H. Embedding Human Knowledge into Deep Neural Network via Attention Map. arXiv 2019, arXiv:1905.03540. [Google Scholar]
- Huang, L.; Wang, W.; Chen, J.; Wei, X.Y. Attention on attention for image captioning. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 4634–4643. [Google Scholar]
- Heo, J.; Lee, H.B.; Kim, S.; Lee, J.; Kim, K.J.; Yang, E.; Hwang, S.J. Uncertainty-aware attention for reliable interpretation and prediction. arXiv 2018, arXiv:1805.09653. [Google Scholar]
- Northcutt, C.G.; Jiang, L.; Chuang, I.L. Confident learning: Estimating uncertainty in dataset labels. arXiv 2019, arXiv:1911.00068. [Google Scholar] [CrossRef]
- Settles, B. Active Learning Literature Survey; University of Wisconsin-Madison Department of Computer Sciences: Madison, WI, USA, 2009. [Google Scholar]
- Guo, M.H.; Xu, T.X.; Liu, J.J.; Liu, Z.N.; Jiang, P.T.; Mu, T.J.; Zhang, S.H.; Martin, R.R.; Cheng, M.M.; Hu, S.M. Attention Mechanisms in Computer Vision: A Survey. arXiv 2021, arXiv:2111.07624. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar]
- Maeda, K.; Takahashi, S.; Ogawa, T.; Haseyama, M. Distress classification of class-imbalanced inspection data via correlation-maximizing weighted extreme learning machine. Adv. Eng. Inform. 2018, 37, 79–87. [Google Scholar] [CrossRef]
- Atha, D.J.; Jahanshahi, M.R. Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection. Struct. Health Monit. 2018, 17, 1110–1128. [Google Scholar] [CrossRef]
- Hyeok-Jung, K.; Kang, S.P.; Choe, G.C. Effect of red mud content on strength and efflorescence in pavement using alkali-activated slag cement. Int. J. Concr. Struct. Mater. 2018, 12, 1–9. [Google Scholar] [CrossRef]
- Sharma, M.; Sharma, M.K.; Leeprechanon, N.; Anotaipaiboon, W.; Chaiyasarn, K. Digital image patch based randomized crack detection in concrete structures. In Proceedings of the IEEE International Conference on Computer Communication and Informatics, Coimbatore, India, 5–7 January 2017; pp. 1–7. [Google Scholar]
- Yuji, S. Maintenance Management System for Concrete Structures in Expressways—A Case Study of NEXCO East Japan Kanto Branch. Concr. J. 2010, 48, 17–20. (In Japanese) [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Tan, M.; Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Chen, S.; Duffield, C.; Miramini, S.; Raja, B.N.K.; Zhang, L. Life-cycle modelling of concrete cracking and reinforcement corrosion in concrete bridges: A case study. Eng. Struct. 2021, 237, 112143. [Google Scholar] [CrossRef]
Deterioration Level | Training | Validation | Test |
---|---|---|---|
A | 2178 | 147 | 155 |
B | 1974 | 142 | 142 |
C | 1816 | 157 | 154 |
Deterioration Level | Training | Validation | Test |
---|---|---|---|
A | 1039 | 143 | 141 |
B | 1125 | 150 | 152 |
C | 1096 | 143 | 129 |
D | 842 | 105 | 119 |
Deterioration Level | Training | Validation | Test |
---|---|---|---|
A | 1915 | 228 | 227 |
B | 2085 | 237 | 265 |
C | 1897 | 233 | 251 |
D | 2102 | 265 | 277 |
Level “A” | Level “B” | Level “C” | Average | |
---|---|---|---|---|
ConfABN | 0.727 | 0.593 | 0.735 | 0.684 |
ABN [10] | 0.693 | 0.568 | 0.645 | 0.635 |
ResNet-50 [21] | 0.614 | 0.544 | 0.660 | 0.606 |
DenseNet-201 [28] | 0.609 | 0.529 | 0.651 | 0.597 |
Inception-v4 [29] | 0.633 | 0.495 | 0.619 | 0.582 |
EfficientNet-B5 [30] | 0.675 | 0.488 | 0.622 | 0.595 |
SENet-154 [9] | 0.663 | 0.404 | 0.697 | 0.588 |
Level “A” | Level “B” | Level “C” | Level “D” | Average | |
---|---|---|---|---|---|
ConfABN | 0.689 | 0.563 | 0.433 | 0.650 | 0.584 |
ABN [10] | 0.649 | 0.564 | 0.417 | 0.580 | 0.553 |
ResNet-50 [21] | 0.598 | 0.492 | 0.427 | 0.632 | 0.537 |
DenseNet-201 [28] | 0.651 | 0.431 | 0.421 | 0.598 | 0.525 |
Inception-v4 [29] | 0.636 | 0.452 | 0.382 | 0.632 | 0.525 |
EfficientNet-B5 [30] | 0.657 | 0.488 | 0.339 | 0.616 | 0.525 |
SENet-154 [9] | 0.601 | 0.583 | 0.448 | 0.619 | 0.562 |
Level “A” | Level “B” | Level “C” | Level “D” | Average | |
---|---|---|---|---|---|
ConfABN | 0.778 | 0.611 | 0.558 | 0.687 | 0.658 |
ABN [10] | 0.752 | 0.618 | 0.553 | 0.676 | 0.649 |
ResNet-50 [21] | 0.764 | 0.577 | 0.500 | 0.660 | 0.625 |
DenseNet-201 [28] | 0.744 | 0.536 | 0.502 | 0.664 | 0.612 |
Inception-v4 [29] | 0.726 | 0.571 | 0.480 | 0.652 | 0.607 |
EfficientNet-B5 [30] | 0.749 | 0.572 | 0.497 | 0.647 | 0.616 |
SENet-154 [9] | 0.717 | 0.609 | 0.472 | 0.673 | 0.618 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogawa, N.; Maeda, K.; Ogawa, T.; Haseyama, M. Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection. Sensors 2022, 22, 382. https://doi.org/10.3390/s22010382
Ogawa N, Maeda K, Ogawa T, Haseyama M. Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection. Sensors. 2022; 22(1):382. https://doi.org/10.3390/s22010382
Chicago/Turabian StyleOgawa, Naoki, Keisuke Maeda, Takahiro Ogawa, and Miki Haseyama. 2022. "Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection" Sensors 22, no. 1: 382. https://doi.org/10.3390/s22010382
APA StyleOgawa, N., Maeda, K., Ogawa, T., & Haseyama, M. (2022). Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection. Sensors, 22(1), 382. https://doi.org/10.3390/s22010382