Caveats and Recommendations to Assess the Validity and Reliability of Cycling Power Meters: A Systematic Scoping Review
Abstract
:1. Introduction
2. Methods
2.1. Eligibility Criteria
2.2. Literature Search
2.3. Studies Filtering and Screening Process
3. Results
4. Discussion
4.1. Technological Description of Power Meters
4.2. Protocols and Data Analysis
4.2.1. Simultaneous and Averaging PO Measurement
4.2.2. Statistical Methods for Assessing the Validity of Power Meters
4.3. Exercise Conditions
4.3.1. Power Output Range
4.3.2. Sprint
4.3.3. Pedalling Cadence
4.3.4. Torque
4.3.5. Position
4.3.6. Participant
4.3.7. Temperature
4.3.8. Vibration
4.3.9. Field Test
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Knudson, D.V. Correcting the use of the term “power” in the strength and conditioning literature. J. Strength Cond. Res. 2009, 23, 1902–1908. [Google Scholar] [CrossRef]
- Passfield, L.; Hopker, J.G.; Jobson, S.; Friel, D.; Zabala, M. Knowledge is power: Issues of measuring training and performance in cycling. J. Sports Sci. 2017, 35, 1426–1434. [Google Scholar] [CrossRef]
- Jobson, S.A.; Passfield, L.; Atkinson, G.; Barton, G.; Scarf, P. The analysis and utilization of cycling training data. Sports Med. 2009, 39, 833–844. [Google Scholar] [CrossRef]
- Garvican, L.A.; Martin, D.T.; McDonald, W.; Gore, C.J. Seasonal variation of haemoglobin mass in internationally competitive female road cyclists. Eur. J. Appl. Physiol. 2010, 109, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Swart, J.; Lamberts, R.P.; Derman, W.; Lambert, M.I. Effects of high-intensity training by heart rate or power in well-trained cyclists. J. Strength Cond. Res. 2009, 23, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.E.; Plasschaert, J.; Kisaalita, N.R. Effects of high intensity training by heart rate or power in recreational cyclists. J. Sports Sci. Med. 2011, 10, 498–501. [Google Scholar]
- Nimmerichter, A.; Eston, R.G.; Bachl, N.; Williams, C. Longitudinal monitoring of power output and heart rate profiles in elite cyclists. J. Sports Sci. 2011, 29, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.C.; Milliken, D.L.; Cobb, J.E.; McFadden, K.L.; Coggan, A.R. Validation of a Mathematical Model for Road Cycling Power. J. Appl. Biomech. 1998, 14, 276–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukes, R.; Carré, M.; Haake, S. Track cycling: An analytical model. In The Engineering of Sport 6; Springer: Berlin/Heidelberg, Germany, 2006; pp. 115–120. [Google Scholar]
- Lukes, R.; Hart, J.; Haake, S. An analytical model for track cycling. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2012, 226, 143–151. [Google Scholar] [CrossRef]
- Gonzalez-Haro, C.; Galilea Ballarini, P.A.; Soria, M.; Drobnic, F.; Escanero, J.F. Comparison of nine theoretical models for estimating the mechanical power output in cycling. Br. J. Sports Med. 2007, 41, 506–509. [Google Scholar] [CrossRef] [Green Version]
- Candau, R.B.; Grappe, F.; Menard, M.; Barbier, B.; Millet, G.Y.; Hoffman, M.D.; Belli, A.R.; Rouillon, J.D. Simplified deceleration method for assessment of resistive forces in cycling. Med. Sci. Sports Exerc. 1999, 31, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- di Prampero, P.E.; Cortili, G.; Mognoni, P.; Saibene, F. Equation of motion of a cyclist. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1979, 47, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Underwood, L.; Jermy, M. Mathematical model of track cycling: The individual pursuit. Procedia 2010, 2, 3217–3222. [Google Scholar] [CrossRef] [Green Version]
- Dahmen, T.; Byshko, R.; Saupe, D.; Röder, M.; Mantler, S. Validation of a model and a simulator for road cycling on real tracks. Sports Eng. 2011, 14, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.C.; Gardner, A.S.; Barras, M.; Martin, D.T. Modeling sprint cycling using field-derived parameters and forward integration. Med. Sci. Sports Exerc. 2006, 38, 592–597. [Google Scholar] [CrossRef] [Green Version]
- Lim, A.C.; Homestead, E.P.; Edwards, A.G.; Carver, T.C.; Kram, R.; Byrnes, W.C. Measuring changes in aerodynamic/rolling resistances by cycle-mounted power meters. Med. Sci. Sports Exerc. 2011, 43, 853–860. [Google Scholar] [CrossRef]
- Bertucci, W.M.; Rogier, S.; Reiser, R.F., 2nd. Evaluation of aerodynamic and rolling resistances in mountain-bike field conditions. J. Sports Sci. 2013, 31, 1606–1613. [Google Scholar] [CrossRef]
- Balmer, J.; Davison, R.C.; Bird, S.R. Peak power predicts performance power during an outdoor 16.1-km cycling time trial. Med. Sci. Sports Exerc. 2000, 32, 1485–1490. [Google Scholar] [CrossRef]
- Bentley, D.J.; McNaughton, L.R.; Thompson, D.; Vleck, V.E.; Batterham, A.M. Peak power output, the lactate threshold, and time trial performance in cyclists. Med. Sci. Sports Exerc. 2001, 33, 2077–2081. [Google Scholar] [CrossRef]
- Bouillod, A.; Pinot, J.; Soenen, F.; Ouvrard, T.; Grappe, F. Dependence of the Nature of the Pedaling Activity on Maximal Aerobic Power in Cycling. Int. J. Sports Physiol. Perform. 2017, 12, 44–49. [Google Scholar] [CrossRef]
- Paton, C.D.; Hopkins, W.G. Seasonal changes in power of competitive cyclists: Implications for monitoring performance. J. Sci. Med. Sport 2005, 8, 375–381. [Google Scholar] [CrossRef]
- Quod, M.J.; Martin, D.T.; Martin, J.C.; Laursen, P.B. The power profile predicts road cycling MMP. Int. J. Sports Med. 2010, 31, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Pinot, J.; Grappe, F. The record power profile to assess performance in elite cyclists. Int. J. Sports Med. 2011, 32, 839–844. [Google Scholar] [CrossRef]
- Ebert, T.R.; Martin, D.T.; McDonald, W.; Victor, J.; Plummer, J.; Withers, R.T. Power output during women’s World Cup road cycle racing. Eur. J. Appl. Physiol. 2005, 95, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Ebert, T.R.; Martin, D.T.; Stephens, B.; Withers, R.T. Power output during a professional men’s road-cycling tour. Int. J. Sports Physiol. Perform. 2006, 1, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Vogt, S.; Heinrich, L.; Schumacher, Y.O.; Blum, A.; Roecker, K.; Dickhuth, H.H.; Schmid, A. Power output during stage racing in professional road cycling. Med. Sci. Sports Exerc. 2006, 38, 147–151. [Google Scholar] [CrossRef]
- Vogt, S.; Schumacher, Y.O.; Blum, A.; Roecker, K.; Dickhuth, H.H.; Schmid, A.; Heinrich, L. Cycling power output produced during flat and mountain stages in the Giro d’Italia: A case study. J. Sports Sci. 2007, 25, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Vogt, S.; Schumacher, Y.O.; Roecker, K.; Dickhuth, H.H.; Schoberer, U.; Schmid, A.; Heinrich, L. Power Output during the Tour de France. Int. J. Sports Med. 2007, 28, 756–761. [Google Scholar] [CrossRef]
- Lim, A.C.; Peterman, J.E.; Turner, B.M.; Livingston, L.R.; Byrnes, W.C. Comparison of male and female road cyclists under identical stage race conditions. Med. Sci. Sports Exerc. 2011, 43, 846–852. [Google Scholar] [CrossRef]
- Macdermid, P.W.; Stannard, S. Mechanical work and physiological responses to simulated cross country mountain bike racing. J. Sports Sci. 2012, 30, 1491–1501. [Google Scholar] [CrossRef]
- Fukuda, T.; Kurano, M.; Iida, H.; Takano, H.; Tanaka, T.; Yamamoto, Y.; Ikeda, K.; Nagasaki, M.; Monzen, K.; Uno, K.; et al. Cardiac rehabilitation decreases plasma pentraxin 3 in patients with cardiovascular diseases. Eur. J. Prev. Cardiol. 2012, 19, 1393–1400. [Google Scholar] [CrossRef] [PubMed]
- Isacco, L.; Ritter, O.; Tordi, N.; Laroche, D.; Degano, B.; Bouhaddi, M.; Rakobowchuk, M.; Mourot, L. Similar substrate oxidation rates in concentric and eccentric cycling matched for aerobic power output. Appl. Physiol. Nutr. Metab. 2016, 41, 1204–1207. [Google Scholar] [CrossRef]
- Majerczak, J.; Grandys, M.; Duda, K.; Zakrzewska, A.; Balcerczyk, A.; Kolodziejski, L.; Szymoniak-Chochol, D.; Smolenski, R.T.; Bartosz, G.; Chlopicki, S.; et al. Moderate-intensity endurance training improves endothelial glycocalyx layer integrity in healthy young men. Exp. Physiol. 2017, 102, 70–85. [Google Scholar] [CrossRef] [Green Version]
- Menetrier, A.; Pinot, J.; Mourot, L.; Grappe, F.; Bouhaddi, M.; Regnard, J.; Tordi, N. Effects of recovery using contrast water therapy or compression stockings on subsequent 5-min cycling performance. J. Sci. Cycl. 2013, 2, 49–56. [Google Scholar]
- Bertucci, W.; Duc, S.; Villerius, V.; Pernin, J.N.; Grappe, F. Validity and reliability of the PowerTap mobile cycling powermeter when compared with the SRM Device. Int. J. Sports Med. 2005, 26, 868–873. [Google Scholar] [CrossRef] [Green Version]
- Novak, A.R.; Dascombe, B.J. Agreement of Power Measures between Garmin Vector and SRM Cycle Power Meters. Meas. Phys. Educ. Exerc. Sci. 2016, 20, 167–172. [Google Scholar] [CrossRef]
- Sparks, S.A.; Dove, B.; Bridge, C.A.; Midgely, A.W.; McNaughton, L.R. Validity and reliability of the look Keo power pedal system for measuring power output during incremental and repeated sprint cycling. Int. J. Sports Physiol. Perform. 2015, 10, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Bertucci, W.; Duc, S.; Villerius, V.; Grappe, F. Validity and reliability of the Axiom PowerTrain cycle ergometer when compared with an SRM powermeter. Int. J. Sports Med. 2005, 26, 59–65. [Google Scholar] [CrossRef]
- Novak, A.R.; Stevens, C.J.; Dascombe, B.J. Agreement between Lemond Revolution cycle ergometer and SRM power meter during power profile and ramp protocol assessments. J. Sci. Cycl. 2015, 4, 37–43. [Google Scholar]
- Woods, G.F.; Day, L.; Withers, R.T.; Ilsley, A.H.; Maxwell, B.F. The dynamic calibration of cycle ergometers. Int. J. Sports Med. 1994, 15, 168–171. [Google Scholar] [CrossRef]
- Gardner, A.S.; Stephens, S.; Martin, D.T.; Lawton, E.; Lee, H.; Jenkins, D. Accuracy of SRM and power tap power monitoring systems for bicycling. Med. Sci. Sports Exerc. 2004, 36, 1252–1258. [Google Scholar] [CrossRef] [Green Version]
- Drouet, J.-M.; Champoux, Y.; Bergeron, F. A user-friendly calibration system for bicycle ergometers, home trainers and bicycle power monitoring devices. Sports Eng. 2008, 11, 15–22. [Google Scholar] [CrossRef]
- Bertucci, W.M.; Grappe, F.; Crequy, S. Original characteristics of a new cycle ergometer. Sports Eng. 2011, 13, 171–179. [Google Scholar] [CrossRef]
- Guiraud, T.; Leger, L.; Long, A.; Thebault, N.; Tremblay, J.; Passelergue, P. Vo2 requirement at different displayed power outputs on five cycle ergometer models: A preliminary study. Br. J. Sports Med. 2010, 44, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Comparing methods of measurement: Why plotting difference against standard method is misleading. Lancet 1995, 346, 1085–1087. [Google Scholar] [CrossRef] [Green Version]
- Guignard, B.; Ayad, O.; Baillet, H.; Mell, F.; Simbana Escobar, D.; Boulanger, J.; Seifert, L. Validity, reliability and accuracy of inertial measurement units (IMUs) to measure angles: Application in swimming. Sports Biomech. 2021, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, F.M.; Maffiuletti, N.A. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J. Strength Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef]
- Atkinson, G.; Nevill, A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Grappe, F. Puissance et Performance en Cyclisme; De Boeck: Louvain-La-Neuve, Belgium, 2012. [Google Scholar]
- Bouillod, A.; Pinot, J.; Soto-Romero, G.; Bertucci, W.; Grappe, F. Validity, Sensitivity, Reproducibility, and Robustness of the PowerTap, Stages, and Garmin Vector Power Meters in Comparison With the SRM Device. Int. J. Sports Physiol. Perform. 2017, 12, 1023–1030. [Google Scholar] [CrossRef]
- Spicer, J.B.; Richardson, C.J.K.; Ehrlich, M.J.; Bernstein, J.R.; Fukuda, M.; Terada, M. Effects of Frictional Loss on Bicycle Chain Drive Efficiency. J. Mech. Des. 2001, 123, 598–605. [Google Scholar] [CrossRef]
- Gavryushin, S.S.; Godzikovsky, V.A.; Gavrilenkov, S.I. Investigation of the Sensitivity of a Strain Gauge Force Sensor to Bending Moment. AIP Conf. Proc. 2019, 2171, 170006. [Google Scholar]
- Bartlett, J.W.; Frost, C. Reliability, repeatability and reproducibility: Analysis of measurement errors in continuous variables. Ultrasound Obstet. Gynecol. 2008, 31, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Connett, J.E. Repeatability and reproducibility. In Wiley Encyclopedia of Clinical Trials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Safrit, M.J.; Wood, T.M. Measurement Concepts in Physical Education and Exercise Science; Human Kinetics Books: Champaign, IL, USA, 1989. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Group, P.-P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 350, g7647. [Google Scholar] [CrossRef] [Green Version]
- Abbiss, C.R.; Peiffer, J.J.; Wall, B.A.; Martin, D.T.; Laursen, P.B. Influence of starting strategy on cycling time trial performance in the heat. Int. J. Sports Med. 2009, 30, 188–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astorino, T.A.; Cottrell, T. Reliability and validity of the velotron racermate cycle ergometer to measure anaerobic power. Int. J. Sports Med. 2012, 33, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Attaway, R.; Bartoli, W.P.; Pate, R.R.; Davis, J.M. Physiologic and perceptual responses to exercise on a new cycle ergometer. Can. J. Sport Sci. 1992, 17, 56–59. [Google Scholar]
- Balmer, J.; Davison, R.C.; Bird, S.R. Reliability of an air-braked ergometer to record peak power during a maximal cycling test. Med. Sci. Sports Exerc. 2000, 32, 1790–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balmer, J.; Davison, R.C.; Coleman, D.A.; Bird, S.R. The validity of power output recorded during exercise performance tests using a Kingcycle air-braked cycle ergometer when compared with an SRM powermeter. Int. J. Sports Med. 2000, 21, 195–199. [Google Scholar] [CrossRef]
- Balmer, J.; Bird, S.; Davison, R.C.; Doherty, M.; Smith, P. Mechanically braked Wingate powers: Agreement between SRM, corrected and conventional methods of measurement. J. Sports Sci. 2004, 22, 661–667. [Google Scholar] [CrossRef]
- Bernard, J.; Decatoire, A.; Lacouture, P. Comparison of two pedaling sensors, icrankset and SRM, against a standard reference sensor. In Proceedings of the 33rd International Conference on Biomechanics in Sports, Poitiers, France, 29 June–3 July 2015. [Google Scholar]
- Bertucci, W. Analysis of the agreement between the Fortius cycling ergometer and the PowerTap powermeter PO during time trials of 6 and 30 min. Comput. Methods Biomech. Biomed. Eng. 2012, 15, 212–214. [Google Scholar] [CrossRef]
- Bertucci, W.; Crequy, S.; Chiementin, X. Validity and reliability of the G-Cog BMX Powermeter. Int. J. Sports Med. 2013, 34, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Bini, R.; Hume, P. Within-and between-session reliability of a pedal force system for power output and pedal force effectiveness measurements. Hum. Mov. 2020, 21, 69–78. [Google Scholar] [CrossRef]
- Bouillod, A.; Pinot, J.; Soto-Romero, G.; Grappe, F. Validity, sensitivity and reproducibility of Stages and Garmin Vector power meters when compared with SRM device. In Proceedings of the International Conference on Biomechanics in Sports, Poitiers, France, 29 June–3 July 2015. [Google Scholar]
- Chiementin, X.; Crequy, S.; Bertucci, W. Validity and reliability of the G-Cog device for kinematic measurements. Int. J. Sports Med. 2013, 34, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Costa, V.P.; Guglielmo, L.G.A.; Paton, C.D. Reproducibility and validity of the PowerCal device for estimating power output during sprints in well-trained cyclists. Isokinet. Exerc. Sci. 2015, 23, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Costa, V.P.; Guglielmo, L.G.; Paton, C.D. Validity and Reliability of the PowerCal Device for Estimating Power Output During Cycling Time Trials. J. Strength Cond. Res. 2017, 31, 227–232. [Google Scholar] [CrossRef]
- Costa, V.P.; Tramontin, A.F.; Visentainer, L.H.; Borszcz, F.K. Test-retest reliability and validity of the Stages mountain bike power meter. Isokinet. Exerc. Sci. 2019, 27, 55–61. [Google Scholar] [CrossRef]
- Czajkowski, M.; Bouillod, A.; Dauriannes, A.; Soto-Romero, G.; Grappe, F. Validity and reproducibility of the Powertap P1 power meter when compared with SRM device. J. Sci. Cycl. 2016, 5, 9–10. [Google Scholar]
- Davison, R.; Corbett, J.; Ansley, L. Influence of temperature and protocol on the calibration of the Computrainer electromagnetically-braked cycling ergometer. Int. SportMed J. 2009, 10, 66–76. [Google Scholar]
- Dickinson, T.; Wright, J. The reliability and accuracy of the Garmin Vector 3 power pedals. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2021, 235, 70–74. [Google Scholar] [CrossRef]
- Duc, S.; Villerius, V.; Bertucci, W.; Grappe, F. Validity and reproducibility of the ergomo® pro power meter compared with the srm and powertap power meters. Int. J. Sports Physiol. Perform. 2007, 2, 270–281. [Google Scholar] [CrossRef] [Green Version]
- Earnest, C.P.; Wharton, R.P.; Church, T.S.; Lucia, A. Reliability of the Lode Excalibur Sport Ergometer and applicability to Computrainer electromagnetically braked cycling training device. J. Strength Cond. Res. 2005, 19, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Finn, J.P.; Maxwell, B.F.; Withers, R.T. Air-braked cycle ergometers: Validity of the correction factor for barometric pressure. Int. J. Sports Med. 2000, 21, 488–491. [Google Scholar] [CrossRef] [PubMed]
- Fiolo, N.J.; Lu, H.Y.; Chen, C.H.; Fuchs, P.X.; Chen, W.H.; Shiang, T.Y. The Validity and Reliability of a Tire Pressure-Based Power Meter for Indoor Cycling. Sensors 2021, 21, 6117. [Google Scholar] [CrossRef]
- Franklin, K.L.; Gordon, R.S.; Baker, J.S.; Davies, B. Comparison of methods for determining power generated on a rope-braked cycle ergometer during low-intensity exercise. Sports Eng. 2006, 9, 29–38. [Google Scholar] [CrossRef]
- Glaner, M.F.; Silva, R.A. Validation of a new cycle ergometer. Int. J. Sports Med. 2011, 32, 117–121. [Google Scholar] [CrossRef] [Green Version]
- Gordon, R.; Franklin, K.; Davies, B.; Baker, J. Further mechanical considerations between polar and SRM mobile ergometer systems during laboratory-based high-intensity, intermittent cycling activity. Res. Sports Med. 2007, 15, 241–247. [Google Scholar] [CrossRef]
- Granier, C.; Hausswirth, C.; Dorel, S.; Le Meur, Y. Validity and Reliability of the Stages Cycling Power Meter. J. Strength Cond. Res. 2020, 34, 3554–3559. [Google Scholar] [CrossRef]
- Hoon, M.W.; Michael, S.W.; Patton, R.L.; Chapman, P.G.; Areta, J.L. A comparison of the accuracy and reliability of the Wahoo KICKR and SRM power meter. J. Sci. Cycl. 2016, 5, 11–15. [Google Scholar]
- Hopker, J.; Myers, S.; Jobson, S.A.; Bruce, W.; Passfield, L. Validity and reliability of the Wattbike cycle ergometer. Int. J. Sports Med. 2010, 31, 731–736. [Google Scholar] [CrossRef] [Green Version]
- Hurst, H.T.; Atkins, S. Agreement between polar and SRM mobile ergometer systems during laboratory-based high-intensity, intermittent cycling activity. J. Sports Sci. 2006, 24, 863–868. [Google Scholar] [CrossRef]
- Hurst, H.T.; Atkins, S.; Sinclair, J.; Metcalfe, J. Agreement between the stages cycling and SRM powermeter systems during field-based off-road climbing. J. Sci. Cycl. 2015, 4, 21–27. [Google Scholar]
- Randolph, H.; Gibson, K.; Karlee, E.; Kaitlin, B.; Gregory, M.; Ardalan, V. Validity and Reproducibility of the Garmin Vector Power Meter When Compared to the SRM Device. J. Sports Sci. 2017, 5, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.; Passfield, L. The dynamic calibration of bicycle power measuring cranks. Eng. Sport 1998, 3, 265–274. [Google Scholar]
- Kirkland, A.; Coleman, D.; Wiles, J.D.; Hopker, J. Validity and reliability of the Ergomopro powermeter. Int. J. Sports Med. 2008, 29, 913–916. [Google Scholar] [CrossRef] [Green Version]
- Lawton, E.; Martin, D.; Lee, H. Validation of SRM power cranks using dynamic calibration. In Proceedings of the Fifth IOC World Congress, Lausanne, The Switzerland, 8 November 1999. [Google Scholar]
- Lanferdini, F.J.; Sperb, C.H.; da Rocha, E.S.; Baptista, R.R.; Vaz, M.A. Power output reliability between Garmin® Vector meter and Lode Excalibur Sport® cycle ergometer. Res. Biomed. Eng. 2020, 36, 333–340. [Google Scholar] [CrossRef]
- Lillo-Bevia, J.R.; Pallares, J.G. Validity and Reliability of the Cycleops Hammer Cycle Ergometer. Int. J. Sports Physiol. Perform. 2018, 13, 853–859. [Google Scholar] [CrossRef]
- MacIntosh, B.R.; Bryan, S.N.; Rishaug, P.; Norris, S.R. Evaluation of the Monark Wingate ergometer by direct measurement of resistance and velocity. Can. J. Appl. Physiol. 2001, 26, 543–558. [Google Scholar] [CrossRef] [PubMed]
- Maier, T.; Schmid, L.; Muller, B.; Steiner, T.; Wehrlin, J.P. Accuracy of Cycling Power Meters against a Mathematical Model of Treadmill Cycling. Int. J. Sports Med. 2017, 38, 456–461. [Google Scholar] [CrossRef] [Green Version]
- McGowan, C.; Watson, G. WahooKICKR18 and common bike-mounted power meters—Do they output accurate power data? J. Sci. Med. Sport 2019, 22, S95. [Google Scholar] [CrossRef]
- McGregor, S.; Rivera, P.D. Validity and Reliability of ComputrainerTM and PowertapTM Power Meters During Sprint Exercise: 141 Board# 48 11: 00 AM–12: 30 PM. Med. Sci. Sports Exerc. 2005, 37, S22. [Google Scholar]
- Maxwell, B.F.; Withers, R.T.; Ilsley, A.H.; Wakim, M.J.; Woods, G.F.; Day, L. Dynamic calibration of mechanically, air- and electromagnetically braked cycle ergometers. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 78, 346–352. [Google Scholar] [CrossRef]
- Merkes, P.F.J.; Menaspa, P.; Abbiss, C.R. Validity of the Velocomp PowerPod Compared With the Verve Cycling InfoCrank Power Meter. Int. J. Sports Physiol. Perform. 2019, 14, 1382–1387. [Google Scholar] [CrossRef]
- Micklewright, D.; Alkhatib, A.; Beneke, R. Mechanically versus electro-magnetically braked cycle ergometer: Performance and energy cost of the Wingate Anaerobic Test. Eur. J. Appl. Physiol. 2006, 96, 748–751. [Google Scholar] [CrossRef]
- Miller, M.C.; Macdermid, P.W.; Fink, P.W.; Stannard, S.R. Agreement between Powertap, Quarq and Stages power meters for cross-country mountain biking. Sports Tech. 2016, 8, 44–50. [Google Scholar] [CrossRef]
- Millet, G.P.; Tronche, C.; Fuster, N.; Bentley, D.J.; Candau, R. Validity and reliability of the Polar S710 mobile cycling powermeter. Int. J. Sports Med. 2003, 24, 156–161. [Google Scholar] [CrossRef]
- Nimmerichter, A.; Schnitzer, L.; Prinz, B.; Simon, D.; Wirth, K. Validity and Reliability of the Garmin Vector Power Meter in Laboratory and Field Cycling. Int. J. Sports Med. 2017, 38, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Montalvo-Perez, A.; Alejo, L.B.; Valenzuela, P.L.; Castellanos, M.; Gil-Cabrera, J.; Talavera, E.; Lucia, A.; Barranco-Gil, D. Validity of the Favero Assioma Duo Power Pedal System for Measuring Power Output and Cadence. Sensors 2021, 21, 2277. [Google Scholar] [CrossRef] [PubMed]
- Pallares, J.G.; Lillo-Bevia, J.R. Validity and Reliability of the PowerTap P1 Pedals Power Meter. J. Sports Sci. Med. 2018, 17, 305–311. [Google Scholar] [PubMed]
- Paton, C.D.; Hopkins, W.G. Ergometer error and biological variation in power output in a performance test with three cycle ergometers. Int. J. Sports Med. 2006, 27, 444–447. [Google Scholar] [CrossRef]
- Gross, M.A.D.; Schellenberg, F.; Lüthi, G.; Baker, M.; Lorenzetti, S. Performance determinants and leg kinematics in the BMX supercross start. J. Sci. Cycl. 2017, 6, 3–12. [Google Scholar] [CrossRef]
- Peiffer, J.J.; Losco, B. Reliability/Validity of the fortius trainer. Int. J. Sports Med. 2011, 32, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Reiser, M.; Meyer, T.; Kindermann, W.; Daugs, R. Transferability of workload measurements between three different types of ergometer. Eur. J. Appl. Physiol. 2000, 82, 245–249. [Google Scholar] [CrossRef]
- Reiser, R.F.; Hart, C.R. Cycling on rollers: Kreitler fan resistance at submaximal levels of effort. Int. J. Sports Med. 2008, 29, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Rivera, P.D.; McGregor, S.J. Validity and Reliability of ComputrainerTM and PowertapTM Power Meters during Incremental and Steady State Exercise: 140 Board# 47 9: 30 AM–11: 00 AM. Med. Sci. Sports Exerc. 2005, 37, S22. [Google Scholar]
- Rodger, S.M.; Plews, D.J.; McQuillan, J.; Driller, M.W. Evaluation of the Cyclus cycle ergometer and the Stages power meter for measurement of power output in cycling. J. Sci. Cycl. 2016, 5, 16–22. [Google Scholar]
- Rodriguez-Rielves, V.; Lillo-Bevia, J.R.; Buendia-Romero, A.; Martinez-Cava, A.; Hernandez-Belmonte, A.; Courel-Ibanez, J.; Pallares, J.G. Are the Assioma Favero Power Meter Pedals a Reliable Tool for Monitoring Cycling Power Output? Sensors 2021, 21, 2789. [Google Scholar] [CrossRef]
- Rodriguez-Rielves, V.; Martinez-Cava, A.; Buendia-Romero, A.; Lillo-Bevia, J.R.; Courel-Ibanez, J.; Hernandez-Belmonte, A.; Pallares, J.G. Reproducibility of the Rotor 2INpower Crankset for Monitoring Cycling Power Output: A Comprehensive Analysis in Different Real-Context Situations. Int. J. Sports Physiol. Perform. 2021, 17, 120–125. [Google Scholar] [CrossRef]
- Wainwright, B.; Cooke, C.B.; O’Hara, J.P. The validity and reliability of a sample of 10 Wattbike cycle ergometers. J. Sports Sci. 2017, 35, 1451–1458. [Google Scholar] [CrossRef] [Green Version]
- Whittle, C.; Smith, N.; Jobson, S.A. Validity of PowerTap P1 Pedals during Laboratory-Based Cycling Time Trial Performance. Sports 2018, 6, 92. [Google Scholar] [CrossRef] [Green Version]
- Wilmore, J.H.; Constable, S.H.; Stanforth, P.R.; Buono, M.J.; Tsao, Y.W.; Roby Jr, F.; Lowdon, B.; Ratliff, R. Mechanical and physiological calibration of four cycle ergometers. Med. Sci. Sports Exerc. 1981, 14, 322–325. [Google Scholar]
- Wright, J.; Walker, T.; Burnet, S.; Jobson, S.A. The Reliability and Validity of the PowerTap P1 Power Pedals Before and After 100 Hours of Use. Int. J. Sports Physiol. Perform. 2019, 14, 855–858. [Google Scholar] [CrossRef]
- Zadow, E.K.; Kitic, C.M.; Wu, S.S.; Smith, S.T.; Fell, J.W. Validity of Power Settings of the Wahoo KICKR Power Trainer. Int. J. Sports Physiol. Perform. 2016, 11, 1115–1117. [Google Scholar] [CrossRef] [PubMed]
- Zadow, E.K.; Kitic, C.M.; Wu, S.S.; Fell, J.W. Reliability of Power Settings of the Wahoo KICKR Power Trainer After 60 Hours of Use. Int. J. Sports Physiol. Perform. 2018, 13, 119–121. [Google Scholar] [CrossRef] [Green Version]
- Strain Gauge—An Overview | ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/engineering/strain-gauge (accessed on 27 November 2021).
- Besnier, F.; Laruelle, E.; Genestier, S.; Gie, S.; Vigneau, C.; Carre, F. [Effects of exercise training on ergocycle during hemodialysis in patients with end stage renal disease: Relevance of the anaerobic threshold intensity]. Nephrol. Ther. 2012, 8, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Hermand, E.; Cassirame, J.; Ennequin, G.; Hue, O. Validation of a Photoplethysmographic Heart Rate Monitor: Polar OH. Int. J. Sports Med. 2019, 40, 462–467. [Google Scholar] [CrossRef]
- Muhlen, J.M.; Stang, J.; Lykke Skovgaard, E.; Judice, P.B.; Molina-Garcia, P.; Johnston, W.; Sardinha, L.B.; Ortega, F.B.; Caulfield, B.; Bloch, W.; et al. Recommendations for determining the validity of consumer wearable heart rate devices: Expert statement and checklist of the INTERLIVE Network. Br. J. Sports Med. 2021, 55, 767–779. [Google Scholar] [CrossRef]
- Sanderson, D.J. The influence of cadence and power output on the biomechanics of force application during steady-rate cycling in competitive and recreational cyclists. J. Sports Sci. 1991, 9, 191–203. [Google Scholar] [CrossRef]
- Obeid, J.; Larche, M.J.; Timmons, B.W. Optimizing the Wingate Anaerobic Cycling Test for youth with juvenile idiopathic arthritis. Pediatr. Exerc. Sci. 2011, 23, 303–310. [Google Scholar] [CrossRef]
- Menaspa, P.; Abbiss, C.R.; Martin, D.T. Performance analysis of a world-class sprinter during cycling grand tours. Int. J. Sports Physiol. Perform. 2013, 8, 336–340. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.A.; Quinney, H.A. Determination of resistance settings for anaerobic power testing. Can. J. Appl. Sport Sci. 1981, 6, 53–56. [Google Scholar] [PubMed]
- Davies, C.; Wemyss-Holden, J.; Young, K. Measurement of short term power output: Comparison between cycling and jumping. Ergonomics 1984, 27, 285–296. [Google Scholar] [CrossRef]
- Duarte, J.P.; Coelho, E.S.M.J.; Severino, V.; Martinho, D.; Luz, L.; Pereira, J.R.; Baptista, R.; Valente-Dos-Santos, J.; Machado-Rodrigues, A.M.; Vaz, V.; et al. Reproducibility of peak power output during a 10-s cycling maximal effort using different sampling rates. Acta Physiol. Hung. 2014, 101, 496–504. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Comparing two methods of clinical measurement: A personal history. Int. J. Epidemiol. 1995, 24 (Suppl. 1), S7–S14. [Google Scholar] [CrossRef]
- Altman, D.G.; Bland, J.M. Measurement in medicine: The analysis of method comparison studies. Statistician 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Hopkins, W.G. How to interpret changes in an athletic performance test. Sportscience 2004, 8, 1–7. [Google Scholar]
- Sale, D.; Norman, R. Testing strength and power. In Physiological Testing of the High Performance Athlete; Human Kinetics: Champaign, IL, USA, 1991; pp. 21–106. [Google Scholar]
- Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- Paton, C.D.; Hopkins, W.G. Variation in performance of elite cyclists from race to race. Eur. J. Sport Sci. 2006, 6, 25–31. [Google Scholar] [CrossRef]
- Van Praagh, E.; Bedu, M.; Roddier, P.; Coudert, J. A simple calibration method for mechanically braked cycle ergometers. Int. J. Sports Med. 1992, 13, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Abbiss, C.R.; Quod, M.J.; Levin, G.; Martin, D.T.; Laursen, P.B. Accuracy of the Velotron ergometer and SRM power meter. Int. J. Sports Med. 2009, 30, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Morrow, J.R.; Jackson, A.W. How “significant” is your reliability? Res. Q. Exerc. Sport 1993, 64, 352–355. [Google Scholar] [CrossRef]
- Atkinson, G. A comparison of statistical methods for assessing measurement repeatability in ergonomics research. Sport Leis. Ergon. 1995, 218–222. [Google Scholar]
- Bland, J.M.; Altman, D.G. A note on the use of the intraclass correlation coefficient in the evaluation of agreement between two methods of measurement. Comput. Biol. Med. 1990, 20, 337–340. [Google Scholar] [CrossRef]
- Sullivan, G.M.; Feinn, R. Using effect size-or why the P value is not enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 1988. [Google Scholar]
- Paton, C.D.; Hopkins, W.G. Tests of cycling performance. Sports Med. 2001, 31, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Okura, T.; Tanaka, K. [Assessment of maximal aerobic and anaerobic power using cycling ergometry]. Nihon Rinsho 2000, 58, 157–161. [Google Scholar]
- Bar-Or, O. The Wingate anaerobic test. An update on methodology, reliability and validity. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Bulbulian, R.; Jeong, J.W.; Murphy, M. Comparison of anaerobic components of the Wingate and Critical Power tests in males and females. Med. Sci. Sports Exerc. 1996, 28, 1336–1341. [Google Scholar] [CrossRef]
- Vandewalle, H.; Peres, G.; Heller, J.; Panel, J.; Monod, H. Force-velocity relationship and maximal power on a cycle ergometer. Correlation with the height of a vertical jump. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 650–656. [Google Scholar] [CrossRef]
- Arsac, L.M.; Belli, A.; Lacour, J.R. Muscle function during brief maximal exercise: Accurate measurements on a friction-loaded cycle ergometer. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 74, 100–106. [Google Scholar] [CrossRef]
- Ravier, G.; Grappe, F.; Rouillon, J.D. Application of force-velocity cycle ergometer test and vertical jump tests in the functional assessment of karate competitor. J. Sports Med. Phys. Fit. 2004, 44, 349–355. [Google Scholar]
- Bassett, D.R., Jr. Correcting the Wingate test for changes in kinetic energy of the ergometer flywheel. Int. J. Sports Med. 1989, 10, 446–449. [Google Scholar] [CrossRef] [PubMed]
- Franklin, K.L.; Gordon, R.S.; Baker, J.S.; Davies, B. Accurate assessment of work done and power during a Wingate anaerobic test. Appl. Physiol. Nutr. Metab. 2007, 32, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.L.; Novaes, J.S.; Reis, V.M.; Giannella-Neto, A. Low sampling rates bias outcomes from the Wingate test. Int. J. Sports Med. 2010, 31, 784–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, S.; Fedewa, M.V.; Hathaway, E.D.; Schmidt, M.D.; Evans, E.M. Sprint interval and moderate-intensity cycling training differentially affect adiposity and aerobic capacity in overweight young-adult women. Appl. Physiol. Nutr. Metab. 2016, 41, 1177–1183. [Google Scholar] [CrossRef]
- Burtscher, M.; Pachinger, O.; Ehrenbourg, I.; Mitterbauer, G.; Faulhaber, M.; Pühringer, R.; Tkatchouk, E. Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. Int. J. Cardiol. 2004, 96, 247–254. [Google Scholar] [CrossRef]
- Vogel, T.; Leprêtre, P.-M.; Brechat, P.-H.; Lonsdorfer, E.; Benetos, A.; Kaltenbach, G.; Lonsdorfer, J. Effects of a short-term personalized Intermittent Work Exercise Program (IWEP) on maximal cardio-respiratory function and endurance parameters among healthy young and older seniors. J. Nutr. Health Aging 2011, 15, 905–911. [Google Scholar] [CrossRef]
- Hancock, N.J.; Shepstone, L.; Rowe, P.; Myint, P.K.; Pomeroy, V.M. Towards Upright Pedalling to drive recovery in people who cannot walk in the first weeks after stroke: Movement patterns and measurement. Physiotherapy 2017, 103, 400–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, C.; Beall, E.B.; Frankemolle, A.M.; Penko, A.; Phillips, M.D.; Lowe, M.J.; Alberts, J.L. Exercise Therapy for Parkinson’s Disease: Pedaling Rate Is Related to Changes in Motor Connectivity. Brain Connect. 2016, 6, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Chavarren, J.; Calbet, J.A. Cycling efficiency and pedalling frequency in road cyclists. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 80, 555–563. [Google Scholar] [CrossRef]
- Hagberg, J.M.; Mullin, J.P.; Giese, M.D.; Spitznagel, E. Effect of pedaling rate on submaximal exercise responses of competitive cyclists. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1981, 51, 447–451. [Google Scholar] [CrossRef]
- Dang, Q.K.; Suh, Y.S. Sensor saturation compensated smoothing algorithm for inertial sensor based motion tracking. Sensors 2014, 14, 8167–8188. [Google Scholar] [CrossRef] [Green Version]
- Duc, S.; Bertucci, W.; Pernin, J.N.; Grappe, F. Muscular activity during uphill cycling: Effect of slope, posture, hand grip position and constrained bicycle lateral sways. J. Electromyogr. Kinesiol. 2008, 18, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Chapman, A.; Vicenzino, B.; Blanch, P.; Hodges, P. Do differences in muscle recruitment between novice and elite cyclists reflect different movement patterns or less skilled muscle recruitment? J. Sci. Med. Sport 2009, 12, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Hug, F.; Drouet, J.M.; Champoux, Y.; Couturier, A.; Dorel, S. Interindividual variability of electromyographic patterns and pedal force profiles in trained cyclists. Eur. J. Appl. Physiol. 2008, 104, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Lopez, J.; Diez-Leal, S.; Ogueta-Alday, A.; Larrazabal, J.; Rodriguez-Marroyo, J.A. Differences in pedalling technique between road cyclists of different competitive levels. J. Sports Sci. 2016, 34, 1619–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korff, T.; Romer, L.M.; Mayhew, I.; Martin, J.C. Effect of pedaling technique on mechanical effectiveness and efficiency in cyclists. Med. Sci. Sports Exerc. 2007, 39, 991–995. [Google Scholar] [CrossRef] [Green Version]
- Mornieux, G.; Stapelfeldt, B.; Gollhofer, A.; Belli, A. Effects of pedal type and pull-up action during cycling. Int. J. Sports Med. 2008, 29, 817–822. [Google Scholar] [CrossRef] [Green Version]
- Mornieux, G.; Gollhofer, A.; Stapelfeldt, B. Muscle coordination while pulling up during cycling. Int. J. Sports Med. 2010, 31, 843–846. [Google Scholar] [CrossRef]
- Smak, W.; Neptune, R.R.; Hull, M.L. The influence of pedaling rate on bilateral asymmetry in cycling. J. Biomech. 1999, 32, 899–906. [Google Scholar] [CrossRef]
- Edeline, O.; Polin, D.; Tourny-Chollet, C.; Weber, J. Effect of workload on bilateral pedaling kinematics in non-trained cyclists. J. Hum. Mov. Stud. 2004, 46, 493–517. [Google Scholar]
- Carpes, F.P.; Faria, I.E.; Mota, C.B. Influence of Exercise Intensity on Bilateral Pedaling Symmetry. Progress in Motor Control VI. 2007. Available online: https://www.semanticscholar.org/paper/Influence-of-exercise-intensity-on-bilateral-Carpes-Rossato/8730adee662e0b307dc1cc36d471c3317b422d5b (accessed on 6 November 2021).
- Carpes, F.P.; Mota, C.B.; Faria, I.E. On the bilateral asymmetry during running and cycling—A review considering leg preference. Phys. Ther. Sport 2010, 11, 136–142. [Google Scholar] [CrossRef]
- Boonstra, T.; Daffertshofer, A.; Van Ditshuizen, J.; Van den Heuvel, M.; Hofman, C.; Willigenburg, N.; Beek, P. Fatigue-related changes in motor-unit synchronization of quadriceps muscles within and across legs. J. Electromyogr. Kinesiol. 2008, 18, 717–731. [Google Scholar] [CrossRef] [PubMed]
- Kell, D.T.; Greer, B.K. Use of the Wattbike cycle ergometer for attenuation of bilateral pedaling asymmetry in trained cyclists. J. Strength Cond. Res. 2017, 31, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Wooles, A.L.; Robinson, A.J.; Keen, P.S. A static method for obtaining a calibration factor for SRM bicycle power cranks. Sports Eng. 2005, 8, 137–144. [Google Scholar] [CrossRef]
- Shute, R.; Zak, R.; Slivka, D. Validity and reproducibility of commercial cycling power meters in hot and cold environmental temperatures. J. Sci. Cycl. 2019, 8, 32–39. [Google Scholar] [CrossRef]
Study | Power Meters | Gold Standard | Lab | Field | n | Power (W) | Cadence (rpm) | Data Averaging | Metrological Properties | Exercise Conditions |
---|---|---|---|---|---|---|---|---|---|---|
Abbiss et al. [59] | Velotron Ergometer (Racer-Mate, Inc., Seattle, WA, USA) | Calibration rig | x | 15 | 250–1700 | 100–120 | Max and full step | Accuracy Reproducibility | Sprint—Time trial 30 km | |
SRM Scientific | Calibration rig | x | 15 | 250–1700 | 100–120 | Max and full step | Sprint—Power range—Time trial 30 km | |||
Astorino and Cottrell [60] | Velotron Ergometer | Monark 894E (Monark, Vansbro, Sweden) | x | 40 | 0–11 W·kg−1 | 140–180 | Average on Wingate (30 s) and peak value | Accuracy Reproducibility | Sprint (Wingate) | |
Attaway et al. [61] | Monark Ergometer and Velodyne Ergometer (Frontline Technology, Inc., Irvine, CA, USA) | Physiologic and perceptual responses | x | 7 | 100–400 | 90 with Monark and Free with Velodyne | Full step | Accuracy Reproducibility | Power range | |
6 | 125–225 | 90 | Full step | Power range | ||||||
Balmer et al. [62] | Kingcycle Air-Braked Cycle | SRM | x | 9 | 400 | - | 60 s | Accuracy Reproducibility | - | |
Balmer et al. [63] | Kingcycle Air-Braked Cycle Ergometer | SRM | x | 13 | 360–500 | - | 60 s | Accuracy | MAP-16.1 km TT | |
Balmer et al. [64] | Monark 814E | SRM Scientific | x | 56 | 300–500 | - | Average on Wingate (30 s) and peak values (1 and 5 s) | Accuracy | Sprint (Wingate) | |
Bernard et al. [65] | I-Crankset (SENSIX Society, Poitiers, France) and SRM | RTSL (Eaton Corporation, Troy Michigan, USA) | x | 1 | Unknown | 56–90 | Full step | Accuracy | Torque range—Cadence range | |
Bertucci et al. [36] | PowerTap PRO + (Saris Cycling Group, Madison, WI, USA) | SRM Scientific | x | x | 1 | 100–420 + sprint | 45–120 | Full step | Accuracy Sensitivity Reproducibility | Power range—Sprint-Position (Seated vs. Standing)—cadence |
Bertucci et al. [39] | Axiom Powertain (Elite, s.r.l., Fontaniva, Italy) | SRM Scientific | x | 19 | 130–400 | 90 during MAP test ~90–100 during TT tests | Full step | Accuracy Reproducibility | Power range—Slope | |
Bertucci et al. [44] | New ergometer | SRM Scientific | x | 1 | 100–300 | 90 | Full step | Accuracy Reproducibility | Power range | |
Bertucci [66] | Fortius cycling ergometer (Tacx, Wassenar, Teh Netherlands) | PowerTap | x | 35 | 200–350 | Unknown | Full step | Accuracy Reproducibility | Time trial 6 and 30 min | |
Bertucci et al. [67] | G-Cog (Rennen Design Group, USA) | SRM and PowerTap Pro | x | x | 1 | 100–1050 | - | Sprint 30 s | Accuracy Reproducibility | Sprint-Power range |
Bini and Hume [68] | I-crankset system (Sensix, France) | Lode Excalibur | x | 17 | 1.5 to 3.5 Watts/Kg | 60–80–100 | 10 crank cycles | Accuracy Reproducibility | Power range | |
Bouillod et al. [69] | Stages one-sided (Stages Cycling, Saddleback Ltd., UK) and Garmin Vector (Olathe, KS, USA) | SRM Professional | x | x | 1 | 150–1400 | 60–100 | Peak 1 and 5 s during sprints and full step during sub-maximal incremental tests, sub-maximal 30-min continuous tests and field test | Accuracy Sensitivity Reproducibility | Power range—Cadence range—Sprint—Field—Position—Time |
Bouillod et al. [51] | Stages one-sided, Garmin Vector and PowerTap G3 | SRM Professional | x | x | 1 | 150–1600 | 60–100 | Peak 1 and 5 s during sprints and full step during sub-maximal incremental tests, sub-maximal 30-min continuous tests, field test and vibration test | Accuracy Sensitivity Reproducibility Robustness | Power range—Cadence range—Sprint—Field—Position—Time—Vibration |
Chiementin et al. [70] | G-Cog (Rennen Design Group, USA) | Uniaxial accelerometer (DJB A/120/V sensitivity: 100 mV/g) | x | 6 | 100–400 | Unknown | Full step | Accuracy Reproducibility | Power range | |
Costa et al. [71] | PowerCal (CycleOps, Madison, WI, USA) | Velotron ergometer | x | 10 | 400–700 | Unknown | Peak and mean 15, 30 and 45 s | Accuracy Reproducibility | Power range | |
Costa et al. [72] | PowerCal (CycleOps, Madison, WI, USA) | Velotron ergometer | x | 21 | ~280 | Unknown | Intervals of 1 km averaged | Accuracy Reproducibility | Time | |
Costa et al. [73] | Stages one-sided | Velotron Ergometer | x | 26 | 100–350 | 90–115 | Full step | Accuracy Reproducibility (two trials) | Power range Time | |
Czajkowski et al. [74] | PowerTap P1 (Saris Cycling Group, Madison, WI, USA) | SRM Professional | x | 5 | 150–1250 | 60–100 | Peak 1 and 5 s during sprints and full step during incremental | Accuracy Reproducibility | Participant—Power range—Cadence range-Sprint | |
Davison et al. [75] | Computrainer ergometer (Racermate Inc., Seattle, WA, USA) | SRM | x | 1 | 200 | ~90 | Full step (2 min) | Accuracy Robustness | Temperature—Calibration procedure | |
Dickinson and Wright [76] | Garmin vector 3 | Lode Excalibur Sport | 7 | 100–350 W + Sprints | Free | Full step (2 min) Peak power 10 s–on sprint | Accuracy Reliability | Large range of power on step of 2 min 10 s sprint all out | ||
Drouet et al. [43] | Tacx Flow Ergotrainer (Tacx BV, The Netherlands) and Computrainer Pro | Calibration rig | x | - | 100–600 | 80–130 | Full Step | Accuracy | Power range—Cadence range | |
SRM and PowerTap | Calibration rig | x | - | 330–607 | 80–130 | Full Step | Power range—Cadence range | |||
Duc et al. [77] | Ergomo Pro (G-Sensortrchnik GmbH und Co. KG, Mörfelden-Walldorf, Germany) | SRM | x | x | 1 | 100–900 | 47–123 | Peak and mean 1 and 5 min | Accuracy Reproducibility | Power range—Sprint—Cadence range |
Earnest et al. [78] | Lode Excalibur (Lode, Groningen, The Netherlands) | - | x | 12 | 100–300 | Free | Last minute of each step | Reproducibility | Power range | |
Finn et al. [79] | Repco air-braked ergometer (Repco Ltd., Huntingdale, Victoria, Australia) | Calibration rig | x | - | 150–1500 | 70–150 | Full step | Accuracy Reproducibility (two ergometers and two trials) Sensitivity | Barometric pressure-Cadence range—Power range | |
Fiolo et al. [80] | Tire pressure sensor (Arofly X-Elite New Taipei City, Taiwan) | SRM | x | 12 | 50–300 | 50–100 | 60 s (eliminating first and last 15 s of the original sample of 90 s) | Accuracy Reproductibility Sensitivity | Steady state riding on trainer with various gearing and cadence | |
Franklin et al. [81] | Monark 824E | SRM Professional | x | 8 | ~180 | 60 | Last 3.5 min averaged | Accuracy Repeatability | - | |
Gardner et al. [42] | SRM | Calibration rig | x | - | 50–1000 | 60–120 | Full step, averaged periods ≥1 min and peak power | Accuracy Reproducibility Robustness | Calibration—temperature—cadence—power range | |
PowerTap | Calibration rig | x | - | 50–1000 | 60–120 | Full step, averaged periods ≥1 min and peak power | Calibration—temperature—cadence—power range | |||
Glaner and Sliva [82] | ICBE (Home made) | Monark 874 Gaz exchange Metalyzer 3B (Cortex Byophisic) | x | 42 | 50–500 | 50 | Peak VO2, HR RPE | Validity | Step test (Balke protocol) | |
Gordon et al. [83] | Polar S710 (Polar, Kempele, Finland) | SRM | - | - | - | - | - | - | Mechanical issues related to the use of the Polar S710 | |
Granier et al. [84] | Stages one-sided | SRM Professional | x | 11 | 100–1200 | Free during submaximal test ~120 rpm at the end of each sprint | Last 30 s of each step during submaximal test First 5 s of each sprint | Accuracy Reproducibility (two trials) | Power range—Sprint | |
Hoon et al. [85] | Wahoo KICKR (Wahoo Fitness, Atlanta, GA, USA) + SRM | Calibration rig | x | Calibration rig | 50–400 | Free | Final 10 s of each step | Accuracy Reproducibility (five trainers and two trials by trainer) | Power range | |
Guiraud et al. [45] | Ergomeca friction-loaded ergometer (GP400, La Bayette, France) | MOXUS Modular VO2 System II (AEI Technologies, PA) | x | 5 | 100–300 | 75–90 | Last minute of each step | Accuracy | Power range—Participant | |
Lifecycle 9500HR lifefitness (electromagnetic brake, Schiller Park, IL, USA) | MOXUS Modular VO2 System II | x | 5 | 100–300 | 75–90 | Last minute of each step | Power range—Participant | |||
Monark 824E | MOXUS Modular VO2 System II | x | 5 | 100–300 | 75–90 | Last minute of each step | Power range—Participant | |||
Polar S710 | MOXUS Modular VO2 System II | x | 5 | 100–300 | 75–90 | Last minute of each step | Power range—Participant | |||
Computrainer Pro RC1 model 8001 | MOXUS Modular VO2 System II + Prony calibration device | x | 5 | 100–300 | 75–90 | Last minute of each step | Power range—Participant | |||
Hopker et al. [86] | Wattbike Cycle Ergometer (Wattbike Ltd., Nottingham, UK) | SRM Scientific | x | Calibration rig | 50–1250 | 70–90 up to 700 W 90 above 700 W | Last minute of each step | Accuracy Reproducibility | Power range—Cadence range | |
Wattbike Cycle Ergometer | SRM Scientific | 20 | 50–340 | 70–105 | Full step | Participant-Power range—Cadence range | ||||
Hurst and Atkins [87] | Polar S710 | SRM Amateur | x | 12 | ~550 | ~115 | Max and full step | Accuracy | Power range | |
Hurst et al. [88] | Stages one-sided | SRM Professional | x | 1 | ~230–450 | ~75–102 | Max and full step | Accuracy Reproducibility (15 trials) | Peak and mean power of one off-road climb | |
Randolph et al. [89] | Garmin Vector | SRM Scientific | x | x | 1 | 100–1150 | 47–123 | Max and full step | Accuracy Reproducibility (10 trials) | Power range—Cadence range—Torque range—Field—Position—Sprint |
Jones and Passfield [90] | SRM (2 Scientific and 1 Professional) | Monark 824E ergometer | x | - | 90–630 | 90 | Last minute of each step | Accuracy Repeatability (two trials) | Power range | |
Kirkland et al. [91] | Ergomo pro | SRM + Monark 814E | x | 9 | 50–450 | Free (~80) | Full step | Accuracy Repeatability (three trials) | Patten range—Power range—Balance L/R quantified with Lode | |
Lawton et al. [92] | SRM | Calibration rig | x | 19 SRM1 Cal rig | 50–900 | 100 | Unknown | Accuracy Reproducibility | Power range | |
Lanferdini et al. [93] | Garmin Vertor | Lode Excalibur Sport | x | 14 | 100–400 | 95 ±5 | 60 s | Accuracy reliability | Rampe test steady cadence Power range | |
Lillo-Bevia and Pallares [94] | Hammer Cycle Ergometer (CycleOps, Madison, WI, USA) | SRM Scientific | x | 11 | 100–500 | 70–100 | Full step excepted first 10 s and last 5 s | Accuracy Reproducibility (three trainers) | Power range—Cadence range—Position | |
MacIntosh et al. [95] | Monark (834E and 868) ergometers | - | x | 5 | 600–1200 | Free | Peak and mean 30 s (Wingate) | Accuracy | Sprint (Wingate) | |
Maier et al. [96] | SRM (12) Powertap (10) Quarq (11) Stages (13) Verve (3) Power2max (2) Garmin Vector (1) Keo Power (1) RotorPower(1) | Mathematical model | x | 32 | Up to 360 | Free | Full step | Accuracy Repeatability (three trials) Reproducibility between power meters | Power range | |
McGowan and Watson [97] | Wahoo KICKR Garmin, Pioneer, Quarq, SRM, Stages | Calibration rig | x | 20 | 50–1000 | 90–120 | Middle 30 s of each step Peak power for each sprint | Accuracy | Power range—Cadence range—Sprint—Time | |
McGregor and Rivera [98] | Computrainer | - | x | 14 | 350–600 | Free | Mean every 5 s and over the entire test | Accuracy Reproducibility (two trials) | Sprint (Wingate) | |
Powertap | - | x | 14 | 350–600 | Free | Mean every 5 s and over the entire test | Sprint (Wingate) | |||
Maxwell et al. [99] | 35 friction-braked (Monark) ergometers | Calibration rig | x | Calibration rig | 50–400 | 60 | Last minute of each step | Accuracy Robustness | Power range—Oldness (old vs. new)—hysteresis effect (up vs. down) | |
Five research-grade air-braked (Repco) ergometers | Calibration rig | x | Calibration rig | 50–1150 | 50–150 | Last minute of each step | Participant—Cadence range—hysteresis effect (up vs. down) | |||
Five electromagnetically braked ergometers | Calibration rig | x | Calibration rig | 50–400 | 40–60 | Last minute of each step | Participant—Cadence range | |||
Merkes et al. [100] | Velocomp PowerPod (Velocomp LLC, Jupiter, FL, USA) | Verve Cycle InfoCrank (Verve Cycling, Perth, Australia) | x | 12 and 4 | 100–1500 | Free | Full step | Accuracy | Power range—Sprint | |
Micklewright et al. [101] | Lode Excalibur | Monark 814E | x | 15 | 400–950 | Free | Peak, minimum, and mean 30 s (Wingate) | Accuracy | Sprint (Wingate) | |
Miller et al. [102] | Quarq (Quarq, Spearfish, SD, USA) and Stages one-sided | PowerTap | x | 4 | ~220 | 60–90 | Full step | Accuracy | Participant—Cadence range | |
Quarq and Stages one-sided | PowerTap | x | 8 | 100–350 | 50–80 | Full step according to the three profiles (UP, DH, and Flat) | Participant—Power range—Field profile-Frequency distribution | |||
Millet et al. [103] | Polar S710 | SRM Professional | x | 8 | 200–440 | Free | Max 5-s value and full step | Accuracy Repeatability (four trials) Sensitivity | Participant—Power range—Position | |
Polar S710 | SRM Professional | x | 44 | ~130–170 | 60–110 | Last 5 min of each trial | Participant-Cadence range | |||
Nimmerichter et al. [104] | Garmin Vector | SRM Professional | x | x | 6 | 100–850 | 50–110 | Full step, 30-s intervals and peak 1 s | Accuracy Repeatability | Power range—cadence range—sprint-time |
Montalvo-Pérez et al. [105] | Favero Duo | SRM | 33 | 1000–1500 Sprint | 75–100 | By step of 75 s | Accuracy Reliability | Power range at different cadence and all out sprint test. | ||
Novak et al. [40] | Lemond revolution cycle ergometer (HOIST Fitness, CA, USA) | SRM Scientific | x | 10 | 100–400 | Free | Full step | Accuracy | Participant—Power range | |
Lemond revolution cycle ergometer | SRM Scientific | x | 9 | 100–1400 | Free | Peak 5 s (stationary and rolling) and 15 s seated + mean 5 s (stationary and rolling), 15, 30, 60, 240, and 600 s rolling | Participant—Power range—sprint with standing start (flywheel speed with both stationary and rolling starts) | |||
Novak and Dascombe [37] | Garmin Vector | SRM Scientific | x | 21 | 200–1200 | Free | Peak 5 s (stationary and rolling) and 15 s seated + mean 5 s (stationary and rolling), 15, 30, 60, 240, and 600 s rolling | Accuracy | Participant—Power range—sprint with standing start (flywheel speed with both stationary and rolling starts) | |
Pallares and Lillo-Bevia [106] | PowerTap P1 | SRM Scientific | x | 33 | 100–500 | 70–100 | Full step excepted first 10 s and last 5 s | Accuracy Reproducibility | Power range—Cadence range—Position | |
Paton and Hopkins [107] | Kingcycle Air-Braked Ergometer, SRM and PowerTap | - | x | 11 | Unknown | Free | Mean 5-min time-trial | Reproducibility (three trials) | - | |
Gross et al. [108] | PowerCal | Velotron Ergometer | x | 9 | 100–300 | ~90 | Full step | Accuracy Reproducibility (two trials) | Power range | |
Peiffer and Losco [109] | Tacx Fortius Virtual Reality cycle trainer | PowerTap | x | 10 | 150–375 | Free | Full step and 2 km averaged values during TTs | Accuracy Reproducibility (three TTs of 20 km) | Participant—Power range | |
Reiser et al. [110] | Cyclus (Avantronic, Leipzig, Germany) and Lode Excalibur | SRM | x | 12 | 100–250 | 70–90 | Last minute of each step-Indirect comparison with physiological measurements | Accuracy | Power range—Cadence range | |
Reiser and Hart [111] | Kreitler Alloy roller (Kreitler Custom Rollers, CO, USA) | SRM Professional | x | 1 | 0–450 | 60–110 | Last minute of each step | Accuracy | Power range | |
Rivera and McGregor [112] | Computrainer | - | x | 14 | 200–250 | Free | Full step | Accuracy Reproducibility (two trials) | Power range | |
Powertap | - | x | 14 | 200–250 | Free | Full step | Power range | |||
Rodger et al. [113] | Cyclus | SRM | x | 10 | 140–1000 | Free for incremental and sprint tests 100 for isokinetic test | Full step for incremental and isokinetic tests Mean 10 s for sprint test | Accuracy | Power range—Sprint | |
Stages one-sided | SRM | x | 10 | 140–1000 | Free for incremental and sprint tests 100 for isokinetic test | Full step for incremental and isokinetic tests Mean 10 s for sprint test | Power range—Sprint | |||
Rodrigez-Rielves et al. [114] | Favero DUO | SRM | x | 12 | 100–650 | 70–100 | Full Stage and peak value | Accuracy Reliability Robustness | Power range seating and standing position with vibration (20–40 Hz) | |
Rodrigez-Rielves et al. [115] | Rotor 2INpower | SRM | X | 12 | 100–650 Spint >1000 | 70–100 | Full Stage and peak value | Accuracy Reliability Robustness | Power range seating and standing position with vibration (20–40 Hz) | |
Sparks et al. [38] | Look Keo Power Pedals (Look, Cadex, France) | SRM Scientific | x | 10 | 75–1100 | 80–90 Free during sprints | Final 30 s of each step of the incremental protocol Each 3 min, 100-W stage of the repeated-sprint protocol Mean of the first 5 s of all-out bouts | Accuracy Reproducibility (two trials for both incremental and sprint tests) | Power range—Sprint | |
Wainwright et al. [116] | 10 Wattbikes | Lode Excalibur | x | Calibration rig | 100–1000 | 70–130 | Last 30 s of each step | Accuracy Reproducibility (10 Wattbikes and two trials by Wattbike) | Power range—Cadence range | |
Whittle et al. [117] | PowerTap P1 | Wattbike Cycle Ergometer | x | 10 | 0–600 | Free | Full step Peak | Accuracy Reproducibility (three trials) | Power range—Time | |
Wilmore et al. [118] | Friction-braked ergometer (fabric belt) | - | x | 10 | 50–250 | 60 | Full step | Accuracy Reproducibility inter-ergometers | Power range | |
Friction-braked ergometer (disc brake) | - | x | 10 | 50–250 | 60 | Full step | Power range | |||
Electrically-braked ergometer | - | x | 10 | 50–250 | 60 | Full step | Power range | |||
Friction-braked ergometer (hydraulic system) | - | x | 10 | 50–250 | 60 | Full step | Power range | |||
Wright et al. [119] | Powertap P1 | Lode Excalibur | 100–250 W Sprint 10 s | 2 min step Spirnt 10 s average | Accuracy Reliability | Power range and sprint comparison between brand new and after 100 h of use | ||||
Woods et al. [41] | Monark | Calibration rig | x | Calibration rig | 0–350 | 60 | Last minute of each step | Accuracy Repeatability (six trials) Reproducibility (six trials) | Power range | |
Zadow et al. [120] | Wahoo KICKR | Calibration Rig | x | Calibration Rig | 100–1000 | 80–120 | Last minute of each step | Accuracy | Power range—Cadence range | |
Zadow et al. [121] | Wahoo KICKR | Calibration Rig | x | Calibration Rig | 100–600 | 80–100 | Last minute of each step | Accuracy Robustness | Power range—Cadence range |
Type of Analysis | Number of Studies |
---|---|
Hypothesis test for bias (Paired t-test, ANOVA) | 54 |
Correlation coefficient and linear regression | 32 |
Limits of agreement | 46 |
Effect size | 7 |
CV | 33 |
ICC | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouillod, A.; Soto-Romero, G.; Grappe, F.; Bertucci, W.; Brunet, E.; Cassirame, J. Caveats and Recommendations to Assess the Validity and Reliability of Cycling Power Meters: A Systematic Scoping Review. Sensors 2022, 22, 386. https://doi.org/10.3390/s22010386
Bouillod A, Soto-Romero G, Grappe F, Bertucci W, Brunet E, Cassirame J. Caveats and Recommendations to Assess the Validity and Reliability of Cycling Power Meters: A Systematic Scoping Review. Sensors. 2022; 22(1):386. https://doi.org/10.3390/s22010386
Chicago/Turabian StyleBouillod, Anthony, Georges Soto-Romero, Frederic Grappe, William Bertucci, Emmanuel Brunet, and Johan Cassirame. 2022. "Caveats and Recommendations to Assess the Validity and Reliability of Cycling Power Meters: A Systematic Scoping Review" Sensors 22, no. 1: 386. https://doi.org/10.3390/s22010386
APA StyleBouillod, A., Soto-Romero, G., Grappe, F., Bertucci, W., Brunet, E., & Cassirame, J. (2022). Caveats and Recommendations to Assess the Validity and Reliability of Cycling Power Meters: A Systematic Scoping Review. Sensors, 22(1), 386. https://doi.org/10.3390/s22010386