Comparison of the Moist Material Relative Permittivity Readouts Using the Non-Invasive Reflectometric Sensors and Microwave Antenna
Abstract
:1. Introduction
1.1. Problem of Moisture Presence in the Building Envelopes
1.2. Material Relative Permittivity
1.3. Time Domain Reflectometry Technique for Evaluation of Moist Material Relative Permittivity Value
1.4. Microwave Measurement Technique to Evaluate the Permittivity Value of the Moist Material
2. Materials and Methods
2.1. Samples Preparation
2.2. Time Domain Reflectometry Measuring Setup
2.3. Microwave Measuring Setup
2.4. Methods
2.4.1. Reflectometric Investigation
2.4.2. Microwave Investigation
2.5. Data Analysis Method
3. Results
3.1. TDR Sensors Readouts
3.2. Microwave Readouts
4. Discussion
4.1. Regression Models
4.2. Uncertainty Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, X.; Derome, D.; Carmeliet, J. Analysis of Moisture Risk in Internally Insulated Masonry Walls. Build. Environ. 2022, 212, 108734. [Google Scholar] [CrossRef]
- Hoła, A.; Matkowski, Z.; Hoła, J. Analysis of the Moisture Content of Masonry Walls in Historical Buildings Using the Basement of a Medieval Town Hall as an Example. Procedia Eng. 2017, 172, 363–368. [Google Scholar] [CrossRef]
- Vereecken, E.; Roels, S. Hygric Performance of a Massive Masonry Wall: How Do the Mortar Joints Influence the Moisture Flux? Constr. Build. Mater. 2013, 41, 697–707. [Google Scholar] [CrossRef]
- Yousuf, H.; Al-Kheetan, M.J.; Rahman, M.M.; Ghaffar, S.H.; Braimah, N.; Chamberlain, D.A. Introducing a Novel Concept of Wick Drainage in Masonry Structures. J. Build. Eng. 2022, 51, 104332. [Google Scholar] [CrossRef]
- Litavcova, E.; Korjenic, A.; Korjenic, S.; Pavlus, M.; Sarhadov, I.; Seman, J.; Bednar, T. Diffusion of Moisture into Building Materials: A Model for Moisture Transport. Energy Build. 2014, 68, 558–561. [Google Scholar] [CrossRef]
- Korjenic, A.; Bednar, T. An Analytical Solution of a Moisture Transfer Problem for Coupled Room and Building Component. Energy Build. 2012, 47, 254–259. [Google Scholar] [CrossRef]
- Suchorab, Z.; Barnat-Hunek, D.; Sobczuk, H. Influence of Moisture on Heat Conductivity of Aerated Concrete. Ecol. Chem. Eng. S 2011, 18, 111–120. [Google Scholar]
- Brzyski, P.; Barnat-Hunek, D.; Suchorab, Z.; Łagód, G. Composite Materials Based on Hemp and Flax for Low-Energy Buildings. Materials 2017, 10, 510. [Google Scholar] [CrossRef]
- Życzyńska, A. The Heat Consumption and Heating Costs after the Insulation of Building Partitions of Building Complex Supplied by the Local Oil Boiler Room. Eksploat. Niezawodn. 2014, 16, 313–318. [Google Scholar]
- Rirsch, E.; Zhang, Z. Rising Damp in Masonry Walls and the Importance of Mortar Properties. Constr. Build. Mater. 2010, 24, 1815–1820. [Google Scholar] [CrossRef]
- Franzoni, E.; Bandini, S. Spontaneous Electrical Effects in Masonry Affected by Capillary Water Rise: The Role of Salts. Constr. Build. Mater. 2012, 35, 642–646. [Google Scholar] [CrossRef]
- Orr, S.A.; Fusade, L.; Young, M.; Stelfox, D.; Leslie, A.; Curran, J.; Viles, H. Moisture Monitoring of Stone Masonry: A Comparison of Microwave and Radar on a Granite Wall and a Sandstone Tower. J. Cult. Herit. 2020, 41, 61–73. [Google Scholar] [CrossRef]
- Li, Y.; Kong, Z.; Xie, H.; Ma, Y.; Mu, B.; Hokoi, S. Construction Type Influences Features of Rising Damp of Blue-Brick Masonry Walls. Constr. Build. Mater. 2021, 284, 122791. [Google Scholar] [CrossRef]
- Llorente-Alvarez, A.; Camino-Olea, M.S.; Cabeza-Prieto, A.; Saez-Perez, M.P.; Rodríguez-Esteban, M.A. The Thermal Conductivity of the Masonry of Handmade Brick Cultural Heritage with Respect to Density and Humidity. J. Cult. Herit. 2022, 53, 212–219. [Google Scholar] [CrossRef]
- Yedra, E.; Ferrández, D.; Morón, C.; Saiz, P. New Test Methods to Determine Water Absorption by Capillarity. Experimental Study in Masonry Mortars. Constr. Build. Mater. 2022, 319, 125988. [Google Scholar] [CrossRef]
- Suchorab, Z.; Frąc, M.; Guz, Ł.; Oszust, K.; Łagód, G.; Gryta, A.; Bilińska-Wielgus, N.; Czerwiński, J. A Method for Early Detection and Identification of Fungal Contamination of Building Materials Using E-Nose. PLoS ONE 2019, 14, e0215179. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, M.; Hokoi, S.; Hatano, M. Model for Simulation of Freezing and Thawing Processes in Building Materials. Build. Environ. 2001, 36, 733–742. [Google Scholar] [CrossRef]
- Wardeh, G.; Perrin, B. Freezing–Thawing Phenomena in Fired Clay Materials and Consequences on Their Durability. Constr. Build. Mater. 2008, 22, 820–828. [Google Scholar] [CrossRef]
- Barnat-Hunek, D.; Smarzewski, P.; Suchorab, Z. Effect of Hydrophobisation on Durability Related Properties of Ceramic Brick. Constr. Build. Mater. 2016, 111, 275–285. [Google Scholar] [CrossRef]
- Voutilainen, J. Methods and Instrumentation for Measuring Moisture in Building Structures; Helsinki University of Technology: Espoo, Finland, 2005. [Google Scholar]
- Ramirez, R.; Ghiassi, B.; Pineda, P.; Lourenço, P.B. Experimental Characterization of Moisture Transport in Brick Masonry with Natural Hydraulic Lime Mortar. Build. Environ. 2021, 205, 108256. [Google Scholar] [CrossRef]
- Linnow, K.; Halsberghe, L.; Steiger, M. Analysis of Calcium Acetate Efflorescences Formed on Ceramic Tiles in a Museum Environment. J. Cult. Herit. 2007, 8, 44–52. [Google Scholar] [CrossRef]
- Andrés, A.; Díaz, M.C.; Coz, A.; Abellán, M.J.; Viguri, J.R. Physico-Chemical Characterisation of Bricks All through the Manufacture Process in Relation to Efflorescence Salts. J. Eur. Ceram. Soc. 2009, 29, 1869–1877. [Google Scholar] [CrossRef]
- Morillas, H.; Maguregui, M.; Trebolazabala, J.; Madariaga, J.M. Nature and Origin of White Efflorescence on Bricks, Artificial Stones, and Joint Mortars of Modern Houses Evaluated by Portable Raman Spectroscopy and Laboratory Analyses. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, L.-O. Hygroscopic Moisture in Concrete-Drying, Measurements & Related Material Properties; Lund University: Lund, Sweden, 1980. [Google Scholar]
- Oliver, A.C. Dampness in Buildings, 2nd ed.; Blackwell Science Ltd.: Cambridge, MA, USA; London, UK, 1997. [Google Scholar]
- Kuske, M.; Romain, A.-C.; Nicolas, J. Microbial Volatile Organic Compounds as Indicators of Fungi. Can an Electronic Nose Detect Fungi in Indoor Environments? Build. Environ. 2005, 40, 824–831. [Google Scholar] [CrossRef] [Green Version]
- Kuske, M.; Rubio, R.; Romain, A.C.; Nicolas, J.; Marco, S. Fuzzy K-NN Applied to Moulds Detection. Sens. Actuators B Chem. 2005, 106, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Malec, A.; Garbacz, M.; Klimek, B.; Guz, Ł.; Golianek, P.; Suchorab, Z. Damages Caused by Microorganisms in Historical Buildings on the Example of a Multi-Family Residential Building. Int. J. Conserv. Sci. 2021, 12, 805–816. [Google Scholar]
- Połednik, B. Variations in Particle Concentrations and Indoor Air Parameters in Classrooms in the Heating and Summer Seasons. Arch. Environ. Prot. 2013, 39, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Morath, S.U.; Hung, R.; Bennett, J.W. Fungal Volatile Organic Compounds: A Review with Emphasis on Their Biotechnological Potential. Fungal Biol. Rev. 2012, 26, 73–83. [Google Scholar] [CrossRef]
- Robert, A. Dielectric Permittivity of Concrete between 50 Mhz and 1 Ghz and GPR Measurements for Building Materials Evaluation. J. Appl. Geophys. 1998, 40, 89–94. [Google Scholar] [CrossRef]
- Freitas, T.S.; Guimarães, A.S.; Roels, S.; Peixoto de Freitas, V.; Cataldo, A. Is the Time-Domain Reflectometry (TDR) Technique Suitable for Moisture Content Measurement in Low-Porosity Building Materials? Sustainability 2020, 12, 7855. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Skierucha, W.; Wilczek, A.; Alokhina, O. Calibration of a TDR Probe for Low Soil Water Content Measurements. Sens. Actuators A Phys. 2008, 147, 544–552. [Google Scholar] [CrossRef]
- Suchorab, Z.; Widomski, M.; Łagód, G.; Barnat-Hunek, D.; Majerek, D. A Noninvasive TDR Sensor to Measure the Moisture Content of Rigid Porous Materials. Sensors 2018, 18, 3935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, J.L.; Annan, A.P. Ground-Penetrating Radar for High-Resolution Mapping of Soil and Rock Stratigraphy1. Geophys. Prospect. 1989, 37, 531–551. [Google Scholar] [CrossRef]
- Daniels, D.J. Surface-Penetrating Radar (IEE Radar, Sonar, Navigation and Avionics Series 6); Institute of Engineering & Technology: London, UK, 1996; ISBN 0852968620. [Google Scholar]
- Korhonen, C.J.; Janoo, V.C.; Berini, C.M. Time-Domain Reflectometry of Water Content in Portland Cement Concrete; Cold Regions Research & Engineering Laboratory: Hanover, NH, USA, 1997. [Google Scholar]
- Mohamed, A.M.O. Principles and Applications of Time Domain Electrometry in Geoenvi-Ronmental Engineering; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Skierucha, W.; Malicki, M.A. TDR Method for the Measurement of Water Content and Salinity of Porous Media; Institute of Agrophysics, Polish Academy of Sciences: Lublin, Poland, 2004. [Google Scholar]
- Wilczek, A.; Szypłowska, A.; Kafarski, M.; Skierucha, W. A Time-Domain Reflectometry Method with Variable Needle Pulse Width for Measuring the Dielectric Properties of Materials. Sensors 2016, 16, 191. [Google Scholar] [CrossRef] [Green Version]
- Velez, P.; Grenier, K.; Mata-Contreras, J.; Dubuc, D.; Martin, F. Highly-Sensitive Microwave Sensors Based on Open Complementary Split Ring Resonators (OCSRRs) for Dielectric Characterization and Solute Concentration Measurement in Liquids. IEEE Access 2018, 6, 48324–48338. [Google Scholar] [CrossRef]
- Wei, Z.; Huang, J.; Li, J.; Xu, G.; Ju, Z.; Liu, X.; Ni, X. A High-Sensitivity Microfluidic Sensor Based on a Substrate Integrated Waveguide Re-Entrant Cavity for Complex Permittivity Measurement of Liquids. Sensors 2018, 18, 4005. [Google Scholar] [CrossRef] [Green Version]
- Hao, H.; Wang, D.; Wang, Z.; Yin, B.; Ruan, W. Design of a High Sensitivity Microwave Sensor for Liquid Dielectric Constant Measurement. Sensors 2020, 20, 5598. [Google Scholar] [CrossRef]
- Oliveira, J.G.D.; Junior, J.G.D.; Pinto, E.N.M.G.; Neto, V.P.S.; D’Assunção, A.G. A New Planar Microwave Sensor for Building Materials Complex Permittivity Characterization. Sensors 2020, 20, 6328. [Google Scholar] [CrossRef]
- Jones, S.B.; Wraith, J.M.; Or, D. Time Domain Reflectometry Measurement Principles and Applications. Hydrol. Process. 2002, 16, 141–153. [Google Scholar] [CrossRef]
- Noborio, K. Measurement of Soil Water Content and Electrical Conductivity by Time Domain Reflectometry: A Review. Comput. Electron. Agric. 2001, 31, 213–237. [Google Scholar] [CrossRef]
- He, H.; Aogu, K.; Li, M.; Xu, J.; Sheng, W.; Jones, S.B.; González-Teruel, J.D.; Robinson, D.A.; Horton, R.; Bristow, K.; et al. A Review of Time Domain Reflectometry (TDR) Applications in Porous Media. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2021; Volume 168, pp. 83–155. ISBN 978-0-12-824589-7. [Google Scholar]
- Majcher, J.; Kafarski, M.; Wilczek, A.; Szypłowska, A.; Lewandowski, A.; Woszczyk, A.; Skierucha, W. Application of a Dagger Probe for Soil Dielectric Permittivity Measurement by TDR. Measurement 2021, 178, 109368. [Google Scholar] [CrossRef]
- Selker, J.S.; Graff, L.; Steenhuis, T. Noninvasive Time Domain Reflectometry Moisture Measurement Probe. Soil Sci. Soc. Am. J. 1993, 57, 934–936. [Google Scholar] [CrossRef]
- Persson, M.; Berndtsson, R. Noninvasive Water Content and Electrical Conductivity Laboratory Measurements Using Time Domain Reflectometry. Soil Sci. Soc. Am. J. 1998, 62, 1471–1476. [Google Scholar] [CrossRef]
- Wraith, J.M.; Robinson, D.A.; Jones, S.B.; Long, D.S. Spatially Characterizing Apparent Electrical Conductivity and Water Content of Surface Soils with Time Domain Reflectometry. Comput. Electron. Agric. 2005, 46, 239–261. [Google Scholar] [CrossRef]
- Choi, C.; Song, M.; Kim, D.; Yu, X. A New Non-Destructive TDR System Combined with a Piezoelectric Stack for Measuring Properties of Geomaterials. Materials 2016, 9, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchorab, Z.; Majerek, D.; Kočí, V.; Černý, R. Time Domain Reflectometry Flat Sensor for Non-Invasive Monitoring of Moisture Changes in Building Materials. Measurement 2020, 165, 108091. [Google Scholar] [CrossRef]
- Suchorab, Z.; Malec, A.; Sobczuk, H.; Łagód, G.; Gorgol, I.; Łazuka, E.; Brzyski, P.; Trník, A. Determination of Time Domain Reflectometry Surface Sensors Sensitivity Depending on Geometry and Material Moisture. Sensors 2022, 22, 735. [Google Scholar] [CrossRef]
- Malicki, M.A.; Skierucha, W.M. A Manually Controlled TDR Soil Moisture Meter Operating with 300 Ps Rise-Time Needle Pulse. Irrig. Sci. 1989, 10, 153–163. [Google Scholar] [CrossRef]
- Černý, R. Time-Domain Reflectometry Method and Its Application for Measuring Moisture Content in Porous Materials: A Review. Measurement 2009, 42, 329–336. [Google Scholar] [CrossRef]
- Loor, G.P. de Dielectric Properties of Heterogeneous Mixtures Containing Water. J. Microw. Power 1968, 3, 67–73. [Google Scholar] [CrossRef]
- Dobson, M.; Ulaby, F.; Hallikainen, M.; El-rayes, M. Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models. IEEE Trans. Geosci. Remote Sens. 1985, 23, 35–46. [Google Scholar] [CrossRef]
- Tinga, W.R.; Voss, W.A.G.; Blossey, D.F. Generalized Approach to Multiphase Dielectric Mixture Theory. J. Appl. Phys. 1973, 44, 3897–3902. [Google Scholar] [CrossRef]
- Szypłowska, A.; Lewandowski, A.; Yagihara, S.; Saito, H.; Furuhata, K.; Szerement, J.; Kafarski, M.; Wilczek, A.; Majcher, J.; Woszczyk, A.; et al. Dielectric Models for Moisture Determination of Soils with Variable Organic Matter Content. Geoderma 2021, 401, 115288. [Google Scholar] [CrossRef]
- Malicki, M.A.; Plagge, R.; Roth, C.H. Improving the Calibration of Dielectric TDR Soil Moisture Determination Taking into Account the Solid Soil. Eur. J. Soil Sci. 1996, 47, 357–366. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Anderson, S.H.; Motavalli, P.P.; Garrett, H.E. Calibration of a Water Content Reflectometer and Soil Water Dynamics for an Agroforestry Practice. Agrofor. Syst. 2011, 82, 61–75. [Google Scholar] [CrossRef]
- Krupka, J.; Kopyt, P.; Czekala, P.; Salski, B.; Derzakowski, K.; Mazierska, J. Complex Permittivity of Mixtures of Sand With Aqueous NaCl Solutions Measured at 2.5 GHz. In Proceedings of the 2021 13th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances (ISEMA), Kiel, Germany, 26–30 July 2021; pp. 1–3. [Google Scholar]
- Davis, B.; Grosvenor, C.; Johnk, R.; Novotny, D.; Baker-Jarvis, J.; Janezic, M. Complex Permittivity of Planar Building Materials Measured with an Ultra-Wideband Free-Field Antenna Measurement System. J. Res. Natl. Inst. Stand. Technol. 2007, 112, 67. [Google Scholar] [CrossRef]
- Horsley, A.; Thaler, D.S. Microwave Detection and Quantification of Water Hidden in and on Building Materials: Implications for Healthy Buildings and Microbiome Studies. BMC Infect. Dis. 2019, 19, 67. [Google Scholar] [CrossRef]
- O’Connor, K.M.; Dowding, C.H. Geomeasurements by Pulsing TDR Cables and Probes; First Issued in Paperback; CRC Press: Boca Raton, FL, USA, 2019; ISBN 978-0-367-39997-9. [Google Scholar]
- BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Guide to the Expression of Uncertainty in Measurement, JCGM 100:2008 (GUM 1995 with Minor Corrections). 2008. Available online: http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (accessed on 6 May 2022).
- Roth, K.; Schulin, R.; Flühler, H.; Attinger, W. Calibration of Time Domain Reflectometry for Water Content Measurement Using a Composite Dielectric Approach. Water Resour. Res. 1990, 26, 2267–2273. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments against Avoiding RMSE in the Literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef] [Green Version]
- Majerek, D.; Widomski, M.; Garbacz, M.; Suchorab, Z. Estimation of the Measurement Uncertainty of Humidity Using a TDR Probe. AIP Conf. Proc. 2018, 1988, 020027. [Google Scholar]
- Pinhasi, Y.; Yahalom, A.; Petnev, S. Propagation of Ultra Wide-Band Signals in Lossy Dispersive Media. In Proceedings of the 2008 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, Tel-Aviv, Israel, 13–14 May 2008; pp. 1–10. [Google Scholar]
- Choroszucho, A.; Butrylo, B.; Steckiewicz, A.; Stankiewicz, J.M. Determination of the Effective Electromagnetic Parameters of Complex Building Materials for Numerical Analysis of Wireless Transmission Networks. Electronics 2020, 9, 1569. [Google Scholar] [CrossRef]
- Kaiser, T. (Ed.) Smart Antennas-State of the Art (EURASIP Book Series on Signal Processing and Communications); Hindawi Publishing Corporation: New York, NY, USA, 2005; ISBN 978-977-5945-09-9. [Google Scholar]
- Binda, L. RILEM TC 177-MDT Recommendations of RILEM TC177-MDT: Masonry Durability and on-Site TestingMD.E.1 Determination of Moisture Distribution and Level Using Radar in Masonry Built with Regular Units. Mater. Struct. 2005, 38, 283–288. [Google Scholar] [CrossRef]
- Tesárek, P.; Pavlík, Z.; Černý, R. Comparison of the Capacitance Method and the Microwave Impulse Method for Determination of Moisture Profiles in Building Materials. Acta Polytech. Czech Tech. Univ. Prague 2005, 45, 42–47. [Google Scholar] [CrossRef]
- Ju, Z.; Liu, X.; Ren, T.; Hu, C. Measuring Soil Water Content With Time Domain Reflectometry: An Improved Calibration Considering Soil Bulk Density. Soil Sci. 2010, 175, 469–473. [Google Scholar] [CrossRef]
- Byun, Y.-H.; Hong, W.-T.; Yoon, H.-K. Characterization of Cementation Factor of Unconsolidated Granular Materials Through Time Domain Reflectometry with Variable Saturated Conditions. Materials 2019, 12, 1340. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Niño, J.M.; Bogena, H.R.; Huisman, J.A.; Schilling, B.; Casadesús, J. On the Accuracy of Factory-Calibrated Low-Cost Soil Water Content Sensors. Sensors 2019, 19, 3101. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; So, S.; Hu, G.; Kim, M.; Badloe, T.; Cho, H.; Kim, J.; Kim, H.; Qiu, C.-W.; Rho, J. Hyperbolic Metamaterials: Fusing Artificial Structures to Natural 2D Materials. eLight 2022, 2, 1–23. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Y.; Yang, G.; Ding, X.; Wu, Q.; Jiang, Y.; Burokur, S.N.; Zhang, K. Perfect Control of Diffraction Patterns with Phase-Gradient Metasurfaces. ACS Appl. Mater. Interfaces 2022, 14, 16856–16865. [Google Scholar] [CrossRef]
Dimensions [cm] | Mass in Dry State [g] | Added Water [g] | Mass after Soaking [g] | Moisture Content by Mass [%] | Moisture Content by Volume [%] | Apparent Density [g/cm3] |
---|---|---|---|---|---|---|
25.2 × 11.9 × 5.9 | 3385.2 | 33.9 | 3419.1 | 1 | 1.9 | 1903.3 |
25.3 × 12.0 × 6.0 | 3332.4 | 66.6 | 3399.0 | 2 | 3.7 | 1833.0 |
25.2 × 12.0 × 6.1 | 3398.4 | 102.0 | 3500.4 | 3 | 5.5 | 1842.5 |
25.1 × 11.9 × 6.0 | 3396.2 | 135.8 | 3532.0 | 4 | 7.6 | 1888.3 |
25.4 × 12.0 × 6.1 | 3461 | 173.1 | 3634.1 | 5 | 9.3 | 1853.9 |
24.9 × 11.9 × 6.0 | 3290.4 | 197.4 | 3487.8 | 6 | 11.1 | 1848.9 |
25.3 × 11.9 × 6.2 | 3374.6 | 236.2 | 3610.8 | 7 | 12.8 | 1822.6 |
25.3 × 12.0 × 6.1 | 3270.2 | 261.6 | 3531.8 | 8 | 14.3 | 1787.1 |
25.2 × 12.0 × 5.9 | 3350 | 301.5 | 3651.5 | 9 | 16.9 | 1877.6 |
25.2 × 11.9 × 6.1 | 3329.6 | 333.0 | 3662.6 | 10 | 18.2 | 1817.6 |
25.3 × 12.0 × 6.1 | 3427 | 377.0 | 3804.0 | 11 | 20.6 | 1874.7 |
25.1 × 11.9 × 6.1 | 3318 | 398.2 | 3716.2 | 12 | 21.9 | 1821.1 |
25.3 × 12.0 × 6.0 | 3410.4 | 443.4 | 3853.8 | 13 | 24.2 | 1858.5 |
25.0 × 11.9 × 6.0 | 3313.6 | 463.9 | 3777.5 | 14 | 26.1 | 1860.9 |
25.2 × 11.8 × 5.8 | 3267.2 | 457.4 | 3724.6 | 14 | 26.6 | 1903.5 |
Sensor | Regression Model | R2 | RSE [%mass] | RMSE [%mass] | F Statistics |
---|---|---|---|---|---|
TDR—sensor A | w = −0.3088∙ε2 + 7.2882∙ε − 24.393 | 0.937 | 1.22 | 1.09 | 88.821 (***) (df = 2; 12) |
TDR—sensor B | w = −0.067∙ε2 + 4.5585∙ε − 20.066 | 0.868 | 1.76 | 1.57 | 39.301 (***) (df = 2; 12) |
Microwave antenna | w = −0.0074∙ε2 + 1.6193∙ε − 4.3662 | 0.946 | 1.12 | 1.00 | 105.463 (***) (df = 2; 12) |
Sensor | Formula | R2 |
---|---|---|
TDR—sensor A | y = 0.9368∙x + 0.4514 | 0.937 |
TDR—sensor B | y = 0.8676∙x + 0.9272 | 0.868 |
Microwave antenna | y = 0.9463∙x + 0.3767 | 0.946 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suchorab, Z.; Tabiś, K.; Brzyski, P.; Szczepaniak, Z.; Rogala, T.; Susek, W.; Łagód, G. Comparison of the Moist Material Relative Permittivity Readouts Using the Non-Invasive Reflectometric Sensors and Microwave Antenna. Sensors 2022, 22, 3622. https://doi.org/10.3390/s22103622
Suchorab Z, Tabiś K, Brzyski P, Szczepaniak Z, Rogala T, Susek W, Łagód G. Comparison of the Moist Material Relative Permittivity Readouts Using the Non-Invasive Reflectometric Sensors and Microwave Antenna. Sensors. 2022; 22(10):3622. https://doi.org/10.3390/s22103622
Chicago/Turabian StyleSuchorab, Zbigniew, Krzysztof Tabiś, Przemysław Brzyski, Zenon Szczepaniak, Tomasz Rogala, Waldemar Susek, and Grzegorz Łagód. 2022. "Comparison of the Moist Material Relative Permittivity Readouts Using the Non-Invasive Reflectometric Sensors and Microwave Antenna" Sensors 22, no. 10: 3622. https://doi.org/10.3390/s22103622
APA StyleSuchorab, Z., Tabiś, K., Brzyski, P., Szczepaniak, Z., Rogala, T., Susek, W., & Łagód, G. (2022). Comparison of the Moist Material Relative Permittivity Readouts Using the Non-Invasive Reflectometric Sensors and Microwave Antenna. Sensors, 22(10), 3622. https://doi.org/10.3390/s22103622