Flexible Pressure Sensor Array with Multi-Channel Wireless Readout Chip
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Subtle BCG Detection
3.2. Multi-Channel Pulse Wave Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, Z.; Liu, H.; Yang, X.; Fan, J.; Bi, H.; Wang, C.; Zhang, Y.; Luo, C.; Chen, X.; Wu, X. Facile fabrication of paper-based flexible thermoelectric generator. Npj Flex. Electron. 2021, 5, 6. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, S.; Zhu, R. A wearable multifunctional pulse monitor using thermosensation-based flexible sensors. IEEE Trans. Biomed. Eng. 2018, 66, 1412–1421. [Google Scholar] [CrossRef] [PubMed]
- Kai, D.; Wu, Z.; Deng, J.; Wang, A.C.; Zou, H.; Chen, C.; Hu, D.; Gu, B.; Sun, B.; Lin, W.Z. A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 2018, 30, 1804944. [Google Scholar] [CrossRef]
- Liu, Y.; Pharr, M.; Salvatore, G.A. A lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614–9635. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.Y.; Lu, S.C. A flexible capacitive tactile sensor array with cmos readout circuits for pulse diagnosis. IEEE Sens. J. 2014, 15, 1170–1177. [Google Scholar] [CrossRef]
- Cui, Z.; Poblete, F.; Zhu, Y. Tailoring temperature coefficient of resistance of silver nanowire nanocomposite and application as stretchable temperature sensor. ACS Appl. Mater. Interfaces 2019, 11, 17836–17842. [Google Scholar] [CrossRef]
- Gao, Q.; Sahin, H.; Kang, J. Strain tunable band structure of a new 2d carbon allotrope c568. J. Semicond. 2020, 41, 68–74. [Google Scholar] [CrossRef]
- Kang, S.; Lee, J.; Lee, S.; Kim, S.G.; Kim, J.K.; Algadi, H.; Al-Sayari, S.; Kim, D.E.; Kim, D.E.; Lee, T. Highly sensitive pressure sensor based on bioinspired porous structure for real-time tactile sensing. Adv. Electron. Mater. 2016, 2, 1600356. [Google Scholar] [CrossRef]
- Lin, Z.; Wu, Z.; Zhang, B.; Wang, Y.C.; Guo, H.; Liu, G.; Chen, C.; Chen, Y.; Yang, J.; Wang, Z.L. A triboelectric nanogenerator-based smart insole for multifunctional gait monitoring. Adv. Mater. Technol. 2019, 4, 1800360. [Google Scholar] [CrossRef]
- Mannsfeld, S.; Tee, C.K.; Stoltenberg, R.M.; Chen, H.H.; Barman, S.; Muir, B.; Sokolov, A.N.; Reese, C.; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864. [Google Scholar] [CrossRef]
- Liu, M.Y.; Hang, C.Z.; Zhao, X.F.; Zhu, L.Y.; Zhang, D.W. Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial. Nano Energy 2021, 87, 106181. [Google Scholar] [CrossRef]
- Yang, T.; Jiang, X.; Zhong, Y.; Zhao, X.; Lin, S.; Li, J.; Xinming, L.; Xu, J.; Li, Z.; Zh, H. A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring. ACS Sens. 2017, 2, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Jae, B.H.; Sung, C.G.; Keun, K.K.; Suk, P.K. A smart health monitoring chair for nonintrusive measurement of biological signals. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 150–158. [Google Scholar] [CrossRef]
- Fan, T.; Liu, Z.; Tian, X.; Li, J.; Yang, J.; Wang, C.; Bi, H.; Qiao, F.; Wu, X.; Chu, J. Object identification with smart glove assembled by pressure sensors. IEEE Sens. Lett. 2021, 5, 5500904. [Google Scholar] [CrossRef]
- Tian, X.; Liu, Z.; Chu, J.; Liu, Z.; Zhang, J. Dual-mode sensor and actuator to learn human-hand tracking and grasping. IEEE Trans. Electron Devices 2019, 66, 5407–5410. [Google Scholar] [CrossRef]
- Conti, F.; Schilling, R.; Schiavone, P.D.; Pullini, A.; Rossi, D.; Gürkaynak, F.; Muehlberghuber, M.; Gautschi, M.; Loi, I.; Haugou, G. An iot endpoint system-on-chip for secure and energy-efficient near-sensor analytics. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 2481–2494. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Emaminejad, S.; Nyein, H.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Liu, Z.; Guo, C.; Yang, J.; Lu, Y. Pressure sensor array with low-power near-sensor cmos chip for human gait monitoring. IEEE Sens. Lett. 2021, 5, 6000304. [Google Scholar] [CrossRef]
- Lyu, L.; Ye, D.; Xu, R.; Mu, G.; Shi, C. A fully-integrated 64-channel wireless neural interfacing soc achieving 110 db afe psrr and supporting 54 mb/s symbol rate, meter-range wireless data transmission. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 831–835. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kwon, D.-Y.; Choi, B.-D. High-accuracy, compact scanning method and circuit for resistive sensor arrays. Sensors 2016, 16, 155. [Google Scholar] [CrossRef] [Green Version]
- Lyu, L.; Wang, Q.; Huang, Z.; Wu, X. An in situ digital background calibration algorithm for multi-channel r-βr ladder dacs. J. Electron. Sci. Technol. 2022, 20, 100150. [Google Scholar] [CrossRef]
- Ye, D.; Wang, Y.; Xiang, Y.; Lyu, L.; Min, H.; Shi, C. A wireless power and data transfer receiver achieving 75.4% effective power conversion efficiency and supporting 0.1% modulation depth for ask demodulation. IEEE J. Solid-State Circuits 2019, 55, 1386–1400. [Google Scholar] [CrossRef]
- Lyu, L.; Ye, D.; Shi, C. A 340 nw/channel 110 db psrr neural recording analog front-end using replica-biasing lna, level-shifter assisted pga, and averaged lfp servo loop in 65nm cmos. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 811–824. [Google Scholar] [CrossRef] [PubMed]
- Muller, R.; Le, H.P.; Li, W.; Ledochowitsch, P.; Gambini, S.; Bjorninen, T.; Koralek, A.; Carmena, J.M.; Maharbiz, M.M.; Alon, E. A minimally invasive 64-channel wireless μecog implant. IEEE J. Solid-State Circuits 2015, 50, 344–359. [Google Scholar] [CrossRef] [Green Version]
- Kassiri, H.; Bagheri, A.; Soltani, N.; Abdelhalim, K.; Jafari, H.M.; Salam, M.T.; Velazquez, J.; Genov, R. Battery-less tri-band-radio neuro-monitor and responsive neurostimulator for diagnostics and treatment of neurological disorders. IEEE J. Solid-State Circuits 2016, 51, 1274–1289. [Google Scholar] [CrossRef]
- Liu, Y.; Luan, S.; Williams, I.; Rapeaux, A.; Constandinou, T.G. A 64-channel versatile neural recording soc with activity-dependent data throughput. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 1344–1355. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Zheng, Y.; Rajkumar, R.; Dawe, G.S. A 0.45 v 100-channel neural-recording ic with sub- μw/channel consumption in 0.18 μm cmos. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 735–746. [Google Scholar] [CrossRef]
- Katsuura, T.; Izumi, S.; Yoshimoto, M.; Kawaguchi, H.; Sekitani, T. Wearable pulse wave velocity sensor using flexible piezoelectric film array. In Proceedings of the 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), Turin, Italy, 19–21 October 2017. [Google Scholar]
- Willemet, M.; Chowienczyk, P.; Alastruey, J. A database of virtual healthy subjects to assess the accuracy of foot-to-foot pulse wave velocities for estimation of aortic stiffness. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H663–H675. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.S.; Carek, A.M.; Inan, O.T.; Mukkamala, R.; Hahn, J.O. Ballistocardiogram-based approach to cuff-less blood pressure monitoring: Proof-of-concept and potential challenges. IEEE Trans. Biomed. Eng. 2018, 65, 2384–2391. [Google Scholar] [CrossRef]
- Yao, Y.; Shin, S.; Mousavi, A.; Kim, C.-S.; Xu, L.; Mukkamala, R.; Hahn, J.-O. Unobtrusive estimation of cardiovascular parameters with limb ballistocardiography. Sensors 2019, 19, 2922. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wangxu, H.; Lyu, L.; Bi, H.; Wu, X. Flexible Pressure Sensor Array with Multi-Channel Wireless Readout Chip. Sensors 2022, 22, 3934. https://doi.org/10.3390/s22103934
Wangxu H, Lyu L, Bi H, Wu X. Flexible Pressure Sensor Array with Multi-Channel Wireless Readout Chip. Sensors. 2022; 22(10):3934. https://doi.org/10.3390/s22103934
Chicago/Turabian StyleWangxu, Haohan, Liangjian Lyu, Hengchang Bi, and Xing Wu. 2022. "Flexible Pressure Sensor Array with Multi-Channel Wireless Readout Chip" Sensors 22, no. 10: 3934. https://doi.org/10.3390/s22103934
APA StyleWangxu, H., Lyu, L., Bi, H., & Wu, X. (2022). Flexible Pressure Sensor Array with Multi-Channel Wireless Readout Chip. Sensors, 22(10), 3934. https://doi.org/10.3390/s22103934