Power Line Communication with Robust Timing and Carrier Recovery against Narrowband Interference for Smart Grid
Abstract
:1. Introduction
- An improved OFDM-based preamble structure that inherits the advantages of both Schmidl’s and Minn’s methods is proposed for robust PLC transmission. More importantly, a novel scrambling operation is applied in the training sequence of the designed preamble so that the influence of the NBI is eliminated.
- In the frequency domain, to achieve diversity gain under the frequency-selective fading channels, two identical training sequences (TS) are distributed alternately in the active sub-carriers. In order to indicate several bits of signaling information for the receiver to acquire the basic transmission parameters quickly, the relative distance between the two TSs could vary.
2. Signal Model and Related Work
3. Proposed Design of Preamble for Synchronization
4. Timing and Carrier Frequency Synchronization through Preamble Detection
4.1. Timing and Fractional CFO Estimation
4.2. Integer CFO Estimation and Signaling Detection
4.3. Computational Complexity Analysis
5. Performance Evaluation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Crow, B.P.; Widjaja, I.; Kim, L.G.; Sakai, P.T. IEEE 802.11 wireless local area networks. IEEE Commun. Mag. 1997, 35, 116–126. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Cosmas, J.; Jawad, N.; Ali, K.; Meunier, B.; Zarakovitis, C.C. Internet of radio and light: 5G building network radio and edge architecture. Intell. Converg. Netw. 2020, 1, 37–57. [Google Scholar] [CrossRef]
- Song, J.; Cao, T.; Zhang, H. Performance analysis of a low-complexity nonorthogonal multiple access scheme in visible light communication downlinks using pulse modulations. Intell. Converg. Netw. 2021, 2, 50–65. [Google Scholar] [CrossRef]
- G.9960; Unified High-Speed Wire-Line Based Home Networking Transceivers—System Architecture and Physical Layer Specification. Telecommunication Standardization Sector of ITU: Geneva, Switzerland, 2010.
- Zou, W.Y.; Wu, Y. COFDM: An overview. IEEE Trans. Broadcast. 1995, 41, 1–8. [Google Scholar] [CrossRef]
- Vangelista, L.; Benvenuto, N.; Tomasin, S.; Nokes, C.; Stott, J.; Filippi, A.; Vlot, M.; Mignone, V.; Morello, A. Key technologies for next-generation terrestrial digital television standard DVB-T2. IEEE Commun. Mag. 2009, 47, 146–153. [Google Scholar] [CrossRef]
- Zimmermann, M.; Dostert, K. Analysis and modeling of impulsive noise in broad-band powerline communications. IEEE Trans. Electromagn. Compat. 2002, 44, 249–258. [Google Scholar] [CrossRef]
- Cortés, J.A.; Diez, L.; Canete, F.J.; Sanchez-Martinez, J.J. Analysis of the indoor broadband power-line noise scenario. IEEE Trans. Electromagn. Compat. 2010, 52, 849–858. [Google Scholar] [CrossRef]
- Katayama, M.; Yamazato, T.; Okada, H. A mathematical model of noise in narrowband power line communication systems. IEEE J. Sel. Areas Commun. 2006, 24, 1267–1276. [Google Scholar] [CrossRef]
- Liu, S.; Yang, F.; Ding, W.; Song, J. Double Kill: Compressive-Sensing-Based Narrow-Band Interference and Impulsive Noise Mitigation for Vehicular Communications. IEEE Trans. Veh. Technol. 2016, 65, 5099–5109. [Google Scholar] [CrossRef]
- Rabie, K.M.; Alsusa, E. Effective Noise Cancellation Using Single-Carrier FDMA Transmission in Power-Line Channels. IEEE Trans. Power Deliv. 2014, 29, 2110–2117. [Google Scholar] [CrossRef] [Green Version]
- Rabie, K.M.; Alsusa, E. Single-carrier FDMA with blanking/clipping for mitigating impulsive noise over PLC channels. In Proceedings of the 18th IEEE International Symposium on Power Line Communications and Its Applications, Glasgow, UK, 30 March–2 April 2014; pp. 340–345. [Google Scholar]
- Rabie, K.M.; Alsusa, E.; Familua, A.D.; Cheng, L. Constant envelope OFDM transmission over impulsive noise power-line communication channels. In Proceedings of the 2015 IEEE International Symposium on Power Line Communications and Its Applications (ISPLC), Austin, TX, USA, 29 March–1 April 2015; pp. 13–18. [Google Scholar]
- Adebisi, B.; Rabie, K.M.; Ikpehai, A.; Soltanpur, C.; Wells, A. Vector OFDM Transmission Over Non-Gaussian Power Line Communication Channels. IEEE Syst. J. 2018, 12, 2344–2352. [Google Scholar] [CrossRef] [Green Version]
- Van de Beek, J.-J.; Sandell, M.; Borjesson, P.L. ML estimation of time and frequency offset in OFDM systems. IEEE Trans. Signal Process. 1997, 45, 1800–1805. [Google Scholar] [CrossRef] [Green Version]
- Schmidl, T.M.; Cox, D.C. Robust frequency and timing synchronization for OFDM. IEEE Trans. Commun. 1997, 45, 1613–1621. [Google Scholar] [CrossRef] [Green Version]
- Minn, H.; Zeng, M.; Bhargava, V.K. On timing offset estimation for OFDM systems. IEEE Commun. Lett. 2000, 4, 242–244. [Google Scholar] [CrossRef]
- Bumiller, G.; Lampe, L. Fast burst synchronization for power line communication system. EURASIP J. Adv. Signal Process. 2007, 2007, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Eklund, C.; Marks, R.B.; Stanwood, K.L.; Wang, S. IEEE standard 802.16: A technical overview of the wirelessMAN air interface for broadband wireless access. IEEE Commun. Mag. 2002, 40, 98–107. [Google Scholar] [CrossRef]
- Liu, S.; Yang, F.; Song, J. An Optimal Interleaving Scheme with Maximum Time-Frequency Diversity for PLC Systems. IEEE Trans. Power Del. 2016, 31, 1007–1014. [Google Scholar] [CrossRef]
- Coulson, A.J. Narrowband interference in pilot symbol assisted OFDM systems. IEEE Trans. Wirel. Commun. 2004, 3, 2277–2287. [Google Scholar] [CrossRef]
- Marey, M.; Steendam, H. Analysis of the narrowband interference effect on OFDM timing synchronization. IEEE Trans. Signal Process. 2007, 55, 4558–4566. [Google Scholar] [CrossRef]
- Godoy, J.; Canete, F.; Cortes, J.; Diez, L. A study on symbol timing recovery schemes for broadband in-home PLC. In Proceedings of the 2012 16th IEEE International Symposium on Power Line Communications and Its Applications (ISPLC), Beijing, China, 27–30 March 2012; pp. 188–193. [Google Scholar]
- Mei, J.; Wang, X.; Zheng, K. An intelligent self-sustained RAN slicing framework for diverse service provisioning in 5G-beyond and 6G networks. Intell. Converg. Netw. 2020, 1, 281–294. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, F.; Song, J. Novel transmit diversity scheme for TDS-OFDM system with frequency-shift m-sequence padding. IEEE Trans. Broadcast. 2012, 58, 317–324. [Google Scholar] [CrossRef]
- Zimmermann, M.; Dostert, K. A multipath model for the powerline channel. IEEE Trans. Commun. 2002, 50, 553–559. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
NBI power | −12 dB |
Symbol Rate | 7.56 MSymbol/s |
Bandwidth | 8 MHz |
Carrier Frequency | 6 MHz |
CFO | 30 kHz |
Symbol Duration | 270.9 s |
Length of TS | 192 |
FFT Size | 1024 |
Path Index | (m) | |||
---|---|---|---|---|
1 | 200 | 0.64 | k | |
2 | 222.4 | 0.38 | (s/m) | 0 |
3 | 244.8 | −0.15 | (s/m) | |
4 | 267.5 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Yang, F.; Li, D.; Yao, R.; Song, J. Power Line Communication with Robust Timing and Carrier Recovery against Narrowband Interference for Smart Grid. Sensors 2022, 22, 4013. https://doi.org/10.3390/s22114013
Liu S, Yang F, Li D, Yao R, Song J. Power Line Communication with Robust Timing and Carrier Recovery against Narrowband Interference for Smart Grid. Sensors. 2022; 22(11):4013. https://doi.org/10.3390/s22114013
Chicago/Turabian StyleLiu, Sicong, Fang Yang, Dejian Li, Ruilong Yao, and Jian Song. 2022. "Power Line Communication with Robust Timing and Carrier Recovery against Narrowband Interference for Smart Grid" Sensors 22, no. 11: 4013. https://doi.org/10.3390/s22114013
APA StyleLiu, S., Yang, F., Li, D., Yao, R., & Song, J. (2022). Power Line Communication with Robust Timing and Carrier Recovery against Narrowband Interference for Smart Grid. Sensors, 22(11), 4013. https://doi.org/10.3390/s22114013