Simulation Study of Radio Frequency Safety and the Optimal Size of a Single-Channel Surface Radio Frequency Coil for Mice at 9.4 T Magnetic Resonance Imaging
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koretsky, A.P. Insights into cellular energy metabolism from transgenic mice. Physiol. Rev. 1995, 75, 667–688. [Google Scholar] [CrossRef] [PubMed]
- Christensen, G.; Wang, Y.; Chien, K.R. Physiological assessment of complex cardiac phenotypes in genetically engineered mice. Am. J. Physiol. 1997, 272, H2513–H2524. [Google Scholar] [CrossRef] [PubMed]
- James, J.F.; Hewett, T.E.; Robbins, J. Cardiac physiology in transgenic mice. Circ. Res. 1998, 82, 407–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roman, B.B.; Goldspink, P.H.; Spaite, E.; Urboniene, D.; McKinney, R.; Geenen, D.L.; Solaro, R.J.; Buttrick, P.M. Inhibition of PKC phosphorylation of cTnI improves cardiac performance in vivo. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H2089–H2095. [Google Scholar] [CrossRef]
- Benveniste, H.; Blackband, S. MR microscopy and high resolution small animal MRI: Applications in neuroscience research. Prog. Neurobiol. 2002, 67, 393–420. [Google Scholar] [CrossRef]
- Cantley, M.D.; Bartold, P.M.; Marino, V.; Reid, R.C.; Fairlie, D.P.; Wyszynski, R.N.; Zilm, P.S.; Haynes, D.R. The use of live-animal micro-computed tomography to determine the effect of a novel phospholipase A2 inhibitor on alveolar bone loss in an in vivo mouse model of periodontitis. J. Periodontal Res. 2009, 44, 317–322. [Google Scholar] [CrossRef]
- Kim, Y.; Hamada, N.; Takahashi, Y.; Sasaguri, K.; Tsukinoki, K.; Onozuka, M.; Sato, S. Cervical sympathectomy causes alveolar bone loss in an experimental rat model. J. Periodontal Res. 2009, 44, 695–703. [Google Scholar] [CrossRef]
- Marques, M.R.; dos Santos, M.C.; da Silva, A.F.; Nociti, F.H.; Barros, S.P., Jr. Parathyroid hormone administration may modulate periodontal tissue levels of interleukin-6, matrix metalloproteinase-2 and matrix metalloproteinase-9 in experimental periodontitis. J. Periodontal Res. 2009, 44, 744–750. [Google Scholar] [CrossRef]
- Polak, D.; Wilensky, A.; Shapira, L.; Halabi, A.; Goldstein, D.; Weiss, E.I.; Houri-Haddad, Y. Mouse model of experimental periodontitis induced by Porphyromonas gingivalis/Fusobacterium nucleatum infection: Bone loss and host response. J. Clin. Periodontol. 2009, 36, 406–410. [Google Scholar] [CrossRef]
- Fernandes, L.A.; de Almeida, J.M.; Theodoro, L.H.; Bosco, A.F.; Nagata, M.J.; Martins, T.M.; Okamoto, T.; Garcia, V.G. Treatment of experimental periodontal disease by photodynamic therapy in immunosuppressed rats. J. Clin. Periodontol. 2009, 36, 219–228. [Google Scholar] [CrossRef]
- Queiroz-Junior, C.M.; Pacheco, C.M.; Maltos, K.L.; Caliari, M.V.; Duarte, I.D.; Francischi, J.N. Role of systemic and local administration of selective inhibitors of cyclo-oxygenase 1 and 2 in an experimental model of periodontal disease in rats. J. Periodontal Res. 2009, 44, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Marzola, P.; Osculati, F.; Sbarbati, A. High field MRI in preclinical research. Eur. J. Radiol. 2003, 48, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Leynes, A.P.; Chen, Y.; Sukumar, S.; Xu, D.; Zhang, X. A compact planar triple-nuclear coil for small animal 1H, 13C, and 31P metabolic MR imaging at 14.1 T. arXiv 2021, arXiv:2109.03015. [Google Scholar]
- Slawson, S.E.; Roman, B.B.; Williams, D.S.; Koretsky, A.P. Cardiac MRI of the normal and hypertrophied mouse heart. Magn. Reson. Med. 1998, 39, 980–987. [Google Scholar] [CrossRef]
- Kim, K.-N.; Seo, J.-H.; Han, S.-D.; Heo, P.; Im, G.H.; Lee, J.H. Development of double-layer coupled coil for improving S/N in 7 T small-animal MRI. Scanning 2015, 37, 361–371. [Google Scholar] [CrossRef]
- Gatto, R.G.; Weissmann, C. Preliminary examination of early neuroconnectivity features in the R6/1 mouse model of Huntington’s disease by ultra-high field diffusion MRI. Neural Regen. Res. 2022, 17, 983–986. [Google Scholar] [CrossRef]
- Zhu, X.H.; Chen, W. In vivo x-nuclear MRS imaging methods for quantitative assessment of neuroenergetic biomarkers in studying brain function and aging. Front. Aging Neurosci. 2018, 10, 394. [Google Scholar] [CrossRef] [Green Version]
- Niendorf, T.; Pohlmann, A.; Reimann, H.M.; Waiczies, H.; Peper, E.; Huelnhagen, T.; Seeliger, E.; Schreiber, A.; Kettritz, R.; Strobel, K.; et al. Advancing cardiovascular, neurovascular, and renal magnetic resonance imaging in small rodents using cryogenic radiofrequency coil technology. Front. Pharmacol. 2015, 6, 255. [Google Scholar] [CrossRef] [Green Version]
- Öz, G.; Tkáč, I.; Uğurbil, K. Animal models and high field imaging and spectroscopy. Dialogues Clin. Neurosci. 2013, 15, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Chi, Z.; Yi, Y.; Wang, Y.; Wu, M.; Wang, L.; Zhao, X.; Meng, Y.; Zheng, Z.; Zhao, Q.; Zhou, J. Adaptive cylindrical wireless metasurfaces in clinical magnetic resonance imaging. Adv. Mater. 2021, 33, 2102469. [Google Scholar] [CrossRef]
- Mahmood, M.F.; Gharghan, S.K.; Mohammed, S.L.; Al-Naji, A.; Chahl, J. Design of powering wireless medical sensor based on spiral-spider coils. Designs 2021, 5, 59. [Google Scholar] [CrossRef]
- Park, B.S.; Rajan, S.S.; McCright, B. Sensitivity and uniformity improvement of phased array MR images using inductive coupling and RF detuning circuits. Magn. Reson. Mater. Phys. Biol. Med. 2020, 33, 725–733. [Google Scholar]
- Park, B.S.; Ma, G.; Koch, W.T.; Rajan, S.S.; Mastromanolis, M.; Lam, J.; Sung, K.; McCright, B. Improvement of 19F MR image uniformity in a mouse model of cellular therapy using inductive coupling. Magn. Reson. Mater. Phys. Biol. Med. 2019, 32, 15–23. [Google Scholar] [CrossRef]
- Seo, J.-H.; Lee, J.J.; Kim, K.-N. Surface coil with an inductively coupled wireless surface and volume coil for improving the magnetic field sensitivity at 400-MHz MRI. J. Magn. 2018, 23, 192–195. [Google Scholar] [CrossRef]
- Bulumulla, S.B.; Fiveland, E.; Park, K.J.; Foo, T.K.; Hardy, C.J. Inductively coupled wireless RF coil arrays. Magn. Reson. Imaging 2015, 33, 351–357. [Google Scholar]
- Mett, R.R.; Sidabras, J.W.; Hyde, J.S. MRI surface-coil pair with strong inductive coupling. Rev. Sci. Instrum. 2016, 87, 124704. [Google Scholar] [CrossRef]
- Wang, T.; Ciobanu, L.; Zhang, X.; Webb, A. Inductively coupled RF coil design for simultaneous microimaging of multiple samples. Concepts Magn. Reson. Part B Magn. Reson. Eng. 2008, 33B, 236–243. [Google Scholar] [CrossRef]
- Kell, R.C.; Greenham, A.C.; Olds, G.C.E. High-permittivity temperature-stable ceramic dielectrics with low microwave loss. Am. Ceram. Soc. 1973, 56, 352–354. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.-H.; Han, Y.; and Chung, J.-Y. A Comparative study of birdcage RF coil configurations for ultra-high field magnetic resonance imaging. Sensors 2022, 22, 1741. [Google Scholar] [CrossRef]
- Vorobyev, V.; Shchelokova, A.; Zivkovic, I.; Slobozhanyuk, A.; Baena, J.D.; Risco, J.P.; Abdeddaim, R.; Webb, A.; Glybovski, S. An artificial dielectric slab for ultra high-field MRI: Proof of concept. J. Magn. Reson. 2020, 320, 106835. [Google Scholar] [CrossRef]
- Zivkovic, I.; Teeuwissea, W.; Slobozhanyukb, A.; Nenashevac, E.; Webb, A. High permittivity ceramics improve the transmit field and receive efficiency of a commercial extremity coil at 1.5 Tesla. J. Magn. Reson. 2019, 299, 59–65. [Google Scholar] [CrossRef]
- Lee, B.-Y.; Zhu, X.-H.; Rupprecht, S.; Lanagan, M.T.; Yang, Q.X.; Chen, W. Large improvement of RF transmission efficiency and reception sensitivity for human in vivo 31P MRS imaging using ultrahigh dielectric constant materials at 7 T. Magn. Reson. Imaging 2017, 42, 158–163. [Google Scholar] [CrossRef]
- Byun, J.-D.; Seo, J.-H.; Kang, T.; Ryu, Y.; Kim, K.-N. Birdcage coil with inductively coupled RF coil array for improving |B1|-field sensitivity in 7-T MRI. J. Magn. 2017, 22, 378–381. [Google Scholar] [CrossRef]
- Dang, Z.-M.; Yuan, J.-K.; Yao, S.-H.; Liao, R.-J. Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 2013, 25, 6334–6365. [Google Scholar] [CrossRef]
- Seo, J.-H.; Han, S.-D.; Kim, K.-N. Improvements in magnetic field intensity and uniformity for small-animal MRI through a high-permittivity material attachment. Electron. Lett. 2016, 52, 898–900. [Google Scholar] [CrossRef]
- Hernandez, D.; Seo, J.-H.; Kim, K.-N. Linear array arrangement using composite right-/left-handed transmission lines for magnetic resonance imaging. Int. J. Imaging Syst. 2020, 30, 216–223. [Google Scholar] [CrossRef]
- Li, Z.; Willoquet, G.; Guillot, G.; Hosseinnezhadian, S.; Jourdain, L.; Poirier-quinot, M.; Darrasse, L.; Ginefri, J.C. Study of two contact-less tuning principles for small monolithic radiofrequency MRI coils and development of an automated system based on piezoelectric motor. Sens. Actuator A Phys. 2016, 241, 176–189. [Google Scholar] [CrossRef]
- Caloz, C.; Itoh, T.; Rennings, A. CRLH metamaterial leaky-wave and resonant antennas. IEEE Antenn. Propag. Mag. 2008, 50, 25–39. [Google Scholar] [CrossRef]
- Caloz, C.; Sanada, A.; Itoh, T. A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth. IEEE Trans. Microw. Theory Tech. 2004, 52, 980–992. [Google Scholar] [CrossRef]
- Lai, A.; Itoh, T.; Caloz, C. Composite right/left-handed transmission line metamaterials. IEEE Microw. Mag. 2004, 5, 34–50. [Google Scholar] [CrossRef]
- Lee, C.J.; Huang, W.; Gummalla, A.; Achour, M. Small antennas based on CRLH structures: Concept, design, and applications. IEEE Antenn. Propag. Mag. 2011, 53, 10–25. [Google Scholar] [CrossRef]
- Puddu, C.; Rao, M.; Xu, X.; Deppe, M.H.; Collier, G.; Maunder, A.; Chan, H.-F.; Zanche, N.D.; Robb, F.; Wild, J.M. An asymmetrical whole-body birdcage RF coil without RF shield for hyperpolarized 129Xe lung MR imaging at 1.5 T. Magn. Reson. Med. 2021, 86, 3373–3381. [Google Scholar] [CrossRef]
- Kim, K.-N.; Han, S.-D.; Seo, J.-H.; Heo, P.; Yoo, D.; Im, G.H.; Lee, J.H. An asymmetric birdcage coil for small-animal MR imaging at 7T. Magn. Reson. Med. Sci. 2017, 16, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.-H.; Ryu, Y.; Han, S.-D.; Song, H.; Kim, H.-K.; Kim, K.-N. Influence of biological subject, shielding cage, and resonance frequency on radio wave propagation in a birdcage coil. Electron. Lett. 2016, 52, 801–803. [Google Scholar] [CrossRef]
- Seo, J.-H.; Song, H.; Kim, H.J.; Han, S.-D.; Heo, P.; Kim, D.; Ryu, Y.; Kim, K.-N. Helmholtz transceiver array for improving the |B1|-field homogeneity at 7-T magnetic resonance imaging. Phys. Wave Phen. 2017, 25, 147–150. [Google Scholar] [CrossRef]
- Seo, J.-H.; Han, S.D.; Kim, K.N. Design of crisscrossed double-layer birdcage coil for improving B1+ field homogeneity for small-animal magnetic resonance imaging at 300 MHz. J. Magn. 2015, 20, 308–311. [Google Scholar] [CrossRef] [Green Version]
- Welsch, G.H.; Mamisch, T.C.; Weber, M.; Horger, W.; Bohndorf, K.; Trattnig, S. High-resolution morphological and biochemical imaging of articular cartilage of the ankle joint at 3.0 T using a new dedicated phased array coil: In vivo reproducibility study. Skeletal Radiol. 2008, 37, 519–526. [Google Scholar] [CrossRef]
- Zanche, N.D.; Chhina, N.; Teh, K.; Randell, C.; Pruessmann, K.P.; Wild, J.M. Asymmetric quadrature split birdcage coil for hyperpolarized 3He lung MRI at 1.5T. Magn. Reson. Med. 2008, 60, 431–438. [Google Scholar] [CrossRef]
- Ahmad, S.F.; Kim, Y.C.; Choi, I.C.; Kim, H.D. Recent progress in birdcage RF coil technology for MRI system. Diagnostics 2020, 10, 1017. [Google Scholar] [CrossRef]
- Labbé, A.; Authelet, G.; Baudouy, B.; van der Beek, C.J.; Briatico, J.; Darrasse, L.; Poirier-Quinot, M. Recent advances and challenges in the development of radiofrequency HTS coil for MRI. Front. Phys. 2021, 9, 386. [Google Scholar] [CrossRef]
- Doty, F.D.; Entzminger, G.; Kulkarni, J.; Pamarthy, K.; Staab, J.P. Radio frequency coil technology for small-animal MRI. NMR Biomed. 2007, 20, 304–325. [Google Scholar] [CrossRef]
- David, E.S.; Guangping, D.; Matthias, N.; Bruce, R.R.; Ravi, S. Cardiac MRI in mice at 9.4 Tesla with a transmit-receive surface coil and a cardiac-tailored intensity-correction algorithm. J. Magn. Reson. Imaging 2007, 26, 279–287. [Google Scholar]
- Jans, V.; Dondorp, W.; Goossens, E.; Mertes, H.; Pennings, G.; de Wert, G. Balancing animal welfare and assisted reproduction: Ethics of preclinical animal research for testing new reproductive technologies. Med. Health Care Philos. 2018, 21, 537–545. [Google Scholar] [CrossRef] [Green Version]
- Pasupuleti, M.K.; Molahally, S.S.; Salwaji, S. Ethical guidelines, animal profile, various animal models used in periodontal research with alternatives and future perspectives. J. Indian Soc. Periodontol. 2016, 20, 360–368. [Google Scholar] [CrossRef]
- Varga, O.; Hansen, A.; Sandøe, P.; Olsson, I. Validating animal models for preclinical research: A scientific and ethical discussion. ATLA Altern. Lab. Anim. 2010, 38, 245–248. [Google Scholar] [CrossRef]
- Champagne, C.; Yoshinari, N.; Oetjen, J.A.; Riché, E.L.; Beck, J.D.; Offenbacher, S. Gender differences in systemic inflammation and atheroma formation following Porphyromonas gingivalis infection in heterozygous apolipoprotein E-deficient mice. J. Periodontal Res. 2009, 44, 569–577. [Google Scholar] [CrossRef]
- Breivik, T.; Gundersen, Y.; Gjermo, P.; von Hörsten, S.; Opstad, P.K. Nicotinic acetylcholine receptor activation mediates nicotine-induced enhancement of experimental periodontitis. J. Periodontal Res. 2009, 44, 110–116. [Google Scholar] [CrossRef]
- Pereira, S.; Veeraraghavan, P.; Ghosh, S.; Gandhi, M. Animal experimentation and ethics in India: The CPCSEA makes a difference. Altern. Lab. Anim. 2004, 32, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Richmond, J. Refinement, reduction, and replacement of animal use for regulatory testing: Future improvements and implementation within the regulatory framework. ILAR J. 2002, 43, S63–S68. [Google Scholar] [CrossRef] [Green Version]
- Eising, E.G.; Hughes, J.; Nolte, F.; Jentzen, W.; Bockisch, A. Burn injury by nuclear magnetic resonance imaging. Clin. Imaging 2010, 34, 293–297. [Google Scholar] [CrossRef]
- Tian, J.; Shrivastava, D.; Strupp, J.; Zhang, J.; Vaughan, J.T. From 7T to 10.5T: B1+, SAR and temperature distribution for head and body MRI. Proc. Int. Soc. Magn. Reson. Med. 2012, 20, 2666. [Google Scholar]
- Eryaman, Y.; Akin, B.; Atalar, E. Reduction of implant RF heating through modification of transmit coil electric field. Magn. Reson. Med. 2011, 65, 1305–1313. [Google Scholar] [CrossRef]
- Fiedler, T.M.; Ladd, M.E.; Bitz, A.K. SAR simulations & safety. NeuroImage 2018, 168, 33–58. [Google Scholar]
- Niendorf, T.; Graessl, A.; Thalhammer, C.; Dieringer, M.A.; Kraus, O.; Santoro, D.; Fuchs, K.; Hezel, F.; Waiczies, S.; Ittermann, B.; et al. Progress and promises of human cardiac magnetic resonance at ultrahigh fields: A physics perspective. J. Magn. Reson. 2013, 229, 208–222. [Google Scholar] [CrossRef]
- Garcia, M.M.; Oliveira, T.R.; Papoti, D.; Chaim, K.T.; Otaduy, M.C.G.; Erni, D.; Zylka, W. Experimental and numerical investigations of a small animal coil for ultra-high field magnetic resonance imaging (7T). Curr. Dir. Biomed. Eng. 2019, 5, 525–528. [Google Scholar] [CrossRef]
- Nitz, W.R.; Brinker, G.; Diehl, D.; Frese, G. Specific absorption rate as a poor indicator of magnetic resonance-related implant heating. Invest. Radiol. 2005, 40, 773–776. [Google Scholar] [CrossRef]
- Nakamura, T.; Fukuda, K.; Hayakawa, K.; Aoki, I.; Matsumoto, K.; Sekine, T.; Ueda, H.; Shimizu, Y. Mechanism of burn injury during magnetic resonance imaging (MRI)—Simple loops can induce heat injury. Front. Med. Biol. Eng. 2001, 11, 117–129. [Google Scholar]
- Chen, B.; Wang, J.; Qi, H.; Zhang, J.; Chen, S.; Wang, X. The specific absorption rate of tissues in rats exposed to electromagnetic plane waves in the frequency range of 0.05–5 GHz and SARwb in free-moving rats. Australas. Phys. Eng. Sci. Med. 2017, 40, 21–28. [Google Scholar] [CrossRef]
- Yee, K.S. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1996, 14, 302–307. [Google Scholar]
- Hoult, D.I. The principle of reciprocity in signal strength calculations—A mathematical guide. Concepts Magn. Reson. 2000, 12, 173–187. [Google Scholar] [CrossRef]
- Im, G.H.; Seo, J.-H.; Kim, K.-N.; Heo, P.; Chung, C.C.; Jang, M.S.; Lee, J.H.; Kim, S.I. Effective arrangement of separated transmit-only/receive-only RF coil for improvement of B1 homogeneity at 7 Tesla. J. Korean Phys. Soc. 2014, 65, 616–624. [Google Scholar] [CrossRef]
- Kagadis, G.C.; Ford, N.R.; Karnabatidis, D.N.; Loudos, G.K. Handbook of Small Animal Imaging: Preclinical Imaging, Therapy, and Applications; CRC Press, Taylor & Francis Group: New York, NY, USA, 2016; pp. 438–441. ISBN 978-1-4665-5569-3. [Google Scholar]
- Gruber, B.; Froeling, M.; Leiner, T.; Klomp, D.W.J. RF coils: A practical guide for nonphysicists. J. Magn. Reson. Imaging 2018, 48, 590–604. [Google Scholar] [CrossRef] [PubMed]
- Haase, A.; Odoj, F.; Von Kienlin, M.; Warnking, J.; Fidler, F.; Weisser, A.; Nittka, M.; Rommel, E.; Lanz, T.; Kalusche, B.; et al. NMR probeheads for in vivo applications. Concepts Magn. Reson. 2000, 12, 361–388. [Google Scholar] [CrossRef]
- Delgado, P.R.; Kuehne, A.; Periquito, J.S.; Millward, J.M.; Pohlmann, A.; Waiczies, S.; Niendorf, T. B1 inhomogeneity correction of RARE MRI with transceive surface radiofrequency probes. Magn. Reson. Med. 2020, 84, 2684–2701. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, M.V.; Collins, C.M.; Sodickson, D.K.; Brown, R.; Wiggins, G.C.; Lattanzi, R. Dependence of B1+ and B1− field patterns of surface coils on the electrical properties of the sample and the MR operating frequency. Concepts Magn. Reson. Part B Magn. Reson. Eng. 2016, 46, 25–40. [Google Scholar] [CrossRef] [Green Version]
- Sklinda, K.; Karpowicz, J.; Stępniewski, A. Electromagnetic exposure of personnel involved in cardiac MRI examinations in 1.5T, 3T and 7T scanners. Int. J. Environ. Res. Public Health 2022, 19, 76. [Google Scholar] [CrossRef]
- Seo, J.-H.; Chung, J.-Y. A preliminary study for reference RF coil at 11.7 T MRI: Based on electromagnetic field simulation of hybrid-BC RF Coil according to diameter and length at 3.0, 7.0 and 11.7 T. Sensors 2022, 22, 1512. [Google Scholar] [CrossRef]
- Seo, J.-H.; Han, S.D.; Kim, K.-N. Investigation of the B1 field distribution and RF power deposition in a birdcage coil as functions of the number of coil legs at 4.7 T, 7.0 T, and 11.7 T. J. Korean Phys. Soc. 2015, 66, 1822–1826. [Google Scholar] [CrossRef]
- Cao, Z.; Park, J.; Cho, Z.-H.; Collins, C.M. Numerical evaluation of image homogeneity, signal-to-noise ratio, and specific absorption rate for human brain imaging at 1.5, 3, 7, 10.5, and 14T in an 8-channel transmit/receive array. J. Magn. Reson. Imaging 2015, 41, 1432–1439. [Google Scholar] [CrossRef] [Green Version]
- Carbone, L. Estimating mouse and rat use in American laboratories by extrapolation from Animal Welfare Act-regulated species. Sci. Rep. 2021, 11, 493. [Google Scholar] [CrossRef]
- Sinmez, C.C.; Yasar, A. Experimental animal use in Turkey: A comparison with other countries. Altern. Lab. Anim. 2019, 47, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Lee, D.Y.; Kang, J.H.; Jeong, J.W.; Kim, J.H.; Kim, H.W.; Oh, D.H.; Kim, J.-M.; Rhim, S.-J.; Kim, G.-D.; et al. Alternative experimental approaches to reduce animal use in biomedical studies. J. Drug Deliv. Sci. Technol. 2022, 68, 103131. [Google Scholar] [CrossRef]
SAR [× 10−3 W/Kg] | 30 mm | 25 mm | 20 mm | 15 mm | 10 mm |
---|---|---|---|---|---|
Max values | 1.251 | 1.488 | 1.853 | 3.496 | 4.661 |
Mean values | 0.163 | 0.154 | 0.139 | 0.117 | 0.082 |
STD | 0.164 | 0.206 | 0.257 | 0.312 | 0.337 |
Field Sensitivity at P1 Point [× 10−8 μT] | B1-Field | B1+-Field | B1−-Field | |
---|---|---|---|---|
Oil phantom | 30 mm | 0.885 | 0.618 | 0.100 |
25 mm | 1.002 | 0.702 | 0.096 | |
20 mm | 1.159 | 0.815 | 0.088 | |
15 mm | 1.424 | 1.004 | 0.075 | |
10 mm | 1.849 | 1.306 | 0.055 | |
Water phantom | 30 mm | 2.108 | 1.401 | 0.507 |
25 mm | 2.205 | 1.492 | 0.452 | |
20 mm | 2.341 | 1.610 | 0.387 | |
15 mm | 2.647 | 1.847 | 0.304 | |
10 mm | 3.043 | 2.142 | 0.196 | |
Mouse phantom | 30 mm | 1.488 | 1.019 | 0.263 |
25 mm | 1.160 | 1.110 | 0.255 | |
20 mm | 1.728 | 1.201 | 0.223 | |
15 mm | 1.824 | 1.280 | 0.159 | |
10 mm | 1.825 | 1.288 | 0.079 |
Sensitivity 37% Drop Point [Pixels] | B1-Field | B1+-Field | B1−-Field | |
---|---|---|---|---|
Oil phantom | 30 mm | 92 (18.4 mm) | 92 (18.4 mm) | 92 (18.4 mm) |
25 mm | 77 (15.4 mm) | 77 (15.4 mm) | 89 (17.8 mm) | |
20 mm | 60 (12.0 mm) | 60 (12.0 mm) | 80 (16.0 mm) | |
15 mm | 41 (8.2 mm) | 41 (8.2 mm) | 68 (13.6 mm) | |
10 mm | 23 (4.6 mm) | 22 (4.4 mm) | 47 (9.4 mm) | |
Water phantom | 30 mm | 99 (19.8 mm) | 100 (20.0 mm) | 89 (17.8 mm) |
25 mm | 93 (18.6 mm) | 94 (18.8 mm) | 91 (18.2 mm) | |
20 mm | 84 (16.8 mm) | 84 (16.8 mm) | 89 (17.8 mm) | |
15 mm | 64 (12.8 mm) | 64 (12.8 mm) | 86 (17.2 mm) | |
10 mm | 38 (7.6 mm) | 38 (7.6 mm) | 72 (14.4 mm) | |
Mouse phantom | 30 mm | 68 (13.6 mm) | 71 (14.2 mm) | 53 (10.6 mm) |
25 mm | 60 (12.0 mm) | 59 (11.8 mm) | 54 (10.8 mm) | |
20 mm | 50 (10.0 mm) | 50 (10.0 mm) | 55 (11.0 mm) | |
15 mm | 35 (7.0 mm) | 35 (7.0 mm) | 56 (11.2 mm) | |
10 mm | 23 (4.6 mm) | 23 (4.6 mm) | 61 (12.2 mm) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, J.-H.; Ryu, Y.; Chung, J.-Y. Simulation Study of Radio Frequency Safety and the Optimal Size of a Single-Channel Surface Radio Frequency Coil for Mice at 9.4 T Magnetic Resonance Imaging. Sensors 2022, 22, 4274. https://doi.org/10.3390/s22114274
Seo J-H, Ryu Y, Chung J-Y. Simulation Study of Radio Frequency Safety and the Optimal Size of a Single-Channel Surface Radio Frequency Coil for Mice at 9.4 T Magnetic Resonance Imaging. Sensors. 2022; 22(11):4274. https://doi.org/10.3390/s22114274
Chicago/Turabian StyleSeo, Jeung-Hoon, Yeunchul Ryu, and Jun-Young Chung. 2022. "Simulation Study of Radio Frequency Safety and the Optimal Size of a Single-Channel Surface Radio Frequency Coil for Mice at 9.4 T Magnetic Resonance Imaging" Sensors 22, no. 11: 4274. https://doi.org/10.3390/s22114274
APA StyleSeo, J.-H., Ryu, Y., & Chung, J.-Y. (2022). Simulation Study of Radio Frequency Safety and the Optimal Size of a Single-Channel Surface Radio Frequency Coil for Mice at 9.4 T Magnetic Resonance Imaging. Sensors, 22(11), 4274. https://doi.org/10.3390/s22114274