The Use of Armeo®Spring Device to Assess the Effect of Trunk Stabilization Exercises on the Functional Capabilities of the Upper Limb—An Observational Study of Patients after Stroke
Abstract
:1. Introduction
2. Methods
2.1. Trial Design
2.2. Therapeutic Intervention
2.3. Devices and Tests Used at Work
2.4. Evaluation Games
2.4.1. Vertical Fishing
2.4.2. Horizontal Fishing
2.4.3. Reaction Time
- The patient does not raise the upper limb;
- The patient raises the upper limb to shoulder height;
- The patient raises the upper limb to the height of the head;
- The patient raises the upper limb above the head.
2.5. Examination Procedure
Armeo®Spring Assessment Parameters
2.6. Ethics
2.7. Sample Size Calculation
2.8. Statistical Analysis
3. Results
3.1. Participants
3.2. Outcomes and Estimation
- Did the test patients differ significantly before therapy?
- How did each of the therapy affect the analyzed results?
- Does an exercise stabilizing the trunk may change the functional state of the upper limb, in patients after stroke, essentially?
3.2.1. Compare the Results of the Study and Control Groups for the Pre-Treatment Measurement
3.2.2. Compare the Results before and after the Exercises in Each of the Studied Groups
3.2.3. Comparison of the Results of the Study and Control Groups after Therapy
4. Discussion
4.1. Research Value
4.2. Study Limitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teasell, R.; Hussein, N. Clinical Consequences of Stroke. Evidence-Based Review of Stroke Rehabilitation: EBRSR.com. 2013. Available online: http://www.ebrsr.com/ (accessed on 2 May 2022).
- French, B.; Thomas, L.H.; Leathley, M.J.; Sutton, C.J.; McAdam, J.; Forster, A.; Langhorne, P.; Price, C.I.M.; Walker, A.; Watkins, C.L.; et al. Repetitive Task Training for Improving Functional Ability after Stroke. Cochrane Database Syst. Rev. 2016, 11, CD006073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwakkel, G.; Kollen, B.J.; van der Grond, J.; Prevo, A.J. Probability of regaining dexterity in the flaccid upper limb: Impact of severity of paresis and time since onset in acute stroke. Stroke 2003, 34, 2181–2186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwakkel, G.; Wagenaar, R.C.; Twisk, J.W.R.; Lankhorst, G.J.; Koetsier, J.C. Effects of intensity of lower and upper extremity training after a primary middle cerebral artery stroke: A randomised clinical trial. Lancet 1999, 354, 191–196. [Google Scholar] [CrossRef]
- Hayward, K.S.; Brauer, S.G. Dose of arm activity training during acute and subacute rehabilitation post stroke: A systematic review of the literature. Clin. Rehabil. 2015, 29, 1234–1243. [Google Scholar] [CrossRef]
- Lai, C.H.; Sung, W.H.; Chiang, S.L.; Lu, L.H.; Lin, C.H.; Tung, Y.C.; Lin, C.H. Bimanual coordination deficits in hands following stroke and their relationship with motor and functional performance. J. Neuroeng. Rehabil. 2019, 16, 101. [Google Scholar] [CrossRef] [Green Version]
- Kim, R.K.; Kang, N. Bimanual Coordination Functions between Paretic and Nonparetic Arms: A Systematic Review and Meta-analysis. J. Stroke Cerebrovasc. Dis. 2020, 29, 104544. [Google Scholar] [CrossRef]
- Kurillo, G.; Zupan, A.; Bajd, T. Force tracking system for the assessment of grip force control in patients with neuromuscular diseases. Clin. Biomech. 2004, 19, 1014–1021. [Google Scholar] [CrossRef]
- Jaric, S.; Russell, E.M.; Collins, J.J.; Marwaha, R. Coordination of hand grip and load forces in uni- and bidirectional static force production tasks. Neurosci. Lett. 2005, 381, 51–56. [Google Scholar] [CrossRef]
- Shechtman, O.; Hope, L.M.; Sindhu, B.S. Evaluation of the Torque–Velocity Test of the BTE-Primus as a Measure of Sincerity of Effort of Grip Strength. J. Hand Ther. 2007, 20, 326–335. [Google Scholar] [CrossRef]
- de Freitas, P.B.; Uygur, M.; Jaric, S. Grip force adaptation in manipulation activities performed under different coating and grasping conditions. Neurosci. Lett. 2009, 457, 16–20. [Google Scholar] [CrossRef]
- Jin, X.; Uygur, M.; Getchell, N.; Hall, S.J.; Jaric, S. The effects of instruction and hand dominance on grip-to-load force coordination in manipulation tasks. Neurosci. Lett. 2011, 504, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Arya, K.N.; Pandian, S. Interlimb neural coupling: Implications for poststroke hemiparesis. Ann. Phys. Rehabil. Med. 2014, 57, 696–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, P.M.; Klein-Vogelbach, S. Right in the Middle: Selective Trunk Activity in the Treatment of Adult Hemiplegia; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Edwards, S. Neurological Physiotherapy: A Problem Solving Approach; Churchill Livingstone: London, UK, 1996. [Google Scholar]
- Sandin, K.J.; Smith, B.S. The measure of balance in sitting in stroke rehabilitation prognosis. Stroke 1990, 21, 82–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, C.L.; Sheu, C.F.; Hsueh, I.P.; Wang, C.H. Trunk control as an early predictor of comprehensive activities of daily living function in stroke patients. Stroke 2002, 33, 2626–2630. [Google Scholar] [CrossRef] [Green Version]
- Verheyden, G.; Nieuwboer, A.; De Wit, L.; Feys, H.; Schuback, B.; Baert, I.; Jenni, W.; Schupp, W.; Thijs, V.; De Weerdt, W. Trunk performance after stroke: An eye catching pre dictor of functional outcome. J. Neurol. Neurosurg. Psychiatry 2007, 78, 694–698. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.-H.; Zheng, D.; Liu, S.-Q.; Zeng, C.-Y.; Xu, Y.-F.; Li, X.-Q. Therapeutic effect of Peto method on the recovery of the motor function in children with cerebral palsy. Chin. J. Clin. Rehabil. 2004, 8, 2902–2903. [Google Scholar]
- Alhwoaimel, N.; Turk, R.; Warner, M.; Verheyden, G.; Thijs, L.; Wee, S.K.; Hughes, A.-M. Do trunk exercises improve trunk and upper extremity performance, post stroke? A systematic review and meta-analysis. NeuroRehabilitation 2018, 43, 395–412. [Google Scholar] [CrossRef]
- Hodges, P.W.; Gurfinkel, V.S.; Brumagne, S.; Smith, T.C.; Cordo, P.C. Coexistence of stability and mobility in postural control: Evidence from postural compensation for respiration. Exp. Brain Res. 2002, 144, 293–302. [Google Scholar] [CrossRef]
- Haruyama, K.; Kawakami, M.; Otsuka, T. Effect of Core Stability Training on Trunk Function, Standing Balance, and Mobility in Stroke Patients: A Randomized Controlled Trial. Neurorehabilit. Neural Repair 2017, 31, 240–249. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.-Y.; Huang, J.-C.; Tseng, H.-Y.; Yang, Y.-C.; Lin, S.-I. Effects of Trunk Exercise on Unstable Surfaces in Persons with Stroke: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2020, 17, 9135. [Google Scholar] [CrossRef]
- Yu, S.-H.; Park, S.-D. The effects of core stability strength exercise on muscle activity and trunk impairment scale in stroke patients. J. Exerc. Rehabilit. 2013, 9, 362–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, E.-J.; Kim, J.-H.; Lee, B.-H. The Effects of Core Stabilization Exercise on Dynamic Balance and Gait Function in Stroke Patients. J. Phys. Ther. Sci. 2013, 25, 803–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.-K.; Lee, H.-J.; Lee, S.-J.; Lee, W.-H. Land-based and aquatic trunk exercise program improve trunk control, balance and activities of daily living ability in stroke: A randomized clinical trial. Eur. J. Phys. Rehabilit. Med. 2019, 55, 687–694. [Google Scholar] [CrossRef]
- Lee, D.-K.; Kim, S.-H. The effect of respiratory exercise on trunk control, pulmonary function, and trunk muscle activity in chronic stroke patients. J. Phys. Ther. Sci. 2018, 30, 700–703. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Kim, E.; Gong, W. The Effects of Trunk Stability Exercise Using PNF on the Functional Reach Test and Muscle Activities of Stroke Patients. J. Phys. Ther. Sci. 2011, 23, 699–702. [Google Scholar] [CrossRef] [Green Version]
- Hariharasudhan, R.; Balamurugan, J. Enhancing trunk stability in acute poststroke subjects using physioball exercise and proprioceptive neuromuscular facilitation technique: A pilot randomized controlled trial. Int. J. Adv. Med. Health Res. 2016, 3, 5–10. [Google Scholar] [CrossRef]
- Park, S.-E.; Moon, S.-H. Effects of trunk stability exercise using proprioceptive neuromuscular facilitation with changes in chair height on the gait of patients who had a stroke. J. Phys. Ther. Sci. 2016, 28, 2014–2018. [Google Scholar] [CrossRef] [Green Version]
- Kilinç, O.; Avcu, F.; Onursal, O.; Ayvat, E.; Demirci, C.S.; Yildirim, S.A. The effects of Bobath-based trunk exercises on trunk control, functional capacity, balance, and gait: A pilot randomized controlled trial. Top. Stroke Rehabilit. 2016, 23, 50–58. [Google Scholar] [CrossRef]
- Desouzart, G. Physiotherapy Intervention According to the Bobath Concept in a Clinical Case of Cerebral Palsy. Orthop. Res. Online J. 2018, 3, 264–266. [Google Scholar] [CrossRef]
- Keser, I.; Kirdi, N.; Meric, A.; Kurne, A.T.; Karabudak, R. Comparing routine neurorehabilitation program with trunk exercises based on Bobath concept in multiple sclerosis: Pilot study. J. Rehabil. Res. Dev. 2013, 50, 133–140. [Google Scholar] [CrossRef]
- Taha, S.I.; Elzanaty, M.Y.; Abdelmageed, S.M.; Sherbini, A.E.I.; Badawy, W.M. Effect of Bobath Concept Combined with Task-Oriented Exercises on Improving Postural Stability in Chronic Stroke Patients: A Randomized Controlled Trial. Int. J. Clin. Exp. Neurol. 2018, 6, 8–11. [Google Scholar]
- Kuciel, M.; Rutkowski, S.; Szary, P.; Kiper, P.; Rutkowska, A. Effect of PNF and NDT Bobath Concepts on Ischemic Strokes Patients for Trunk Rehabilitation—A Randomized Pilot Study. Rehabil. Med. 2021, 25, 4–8. [Google Scholar] [CrossRef]
- Armeo®Spring. User Manual; Hocoma: Volketswil, Switzerland, 2009. [Google Scholar]
- Colomer, C.; Baldoví, A.; Torromé, S.; Navarro, M.D.; Moliner, B.; Ferri, J.; Noé, E. Efficacy of Armeo®Spring during the chronic phase of stroke. Study in mild to moderate cases of hemiparesis. Neurología 2013, 28, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Gueye, T.; Dedkova, M.; Rogalewicz, V.; Grunerova-Lippertova, M.; Angerova, Y. Early post-stroke rehabilitation for upper limb motor function using virtual reality and exoskeleton: Equally efficient in older patients. Pol. J. Neurol. Neurosurg. 2021, 55, 91–96. [Google Scholar] [CrossRef]
- Gijbels, D.; Lamers, I.; Kerkhofs, L.; Alders, G.; Knippenberg, E.; Feys, P. The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: A pilot study. J. Neuroeng. Rehabilit. 2011, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Adomavičienė, A.; Daunoravičienė, K.; Kubilius, R.; Varžaitytė, L.; Raistenskis, J. Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System. Medicina 2019, 55, 98. [Google Scholar] [CrossRef] [Green Version]
- Napier, J.R. Hands; Princeton University Press: Princeton, NJ, USA, 1993. [Google Scholar]
- Brott, T.; Adams, H.P.; Olinger, C.P.; Marler, J.R.; Barsan, W.G.; Biller, J.; Spilker, J.; Holleran, R.; Eberle, R.; Hertzberg, V. Measurements of acute cerebral infarction: A clinical examination scale. Stroke 1989, 20, 864–870. [Google Scholar] [CrossRef] [Green Version]
- Franchignoni, F.P.; Tesio, L.; Ricupero, C.; Martino, M.T. Trunk control test as an early predictor of stroke rehabilitation outcome. Stroke 1997, 28, 1382–1385. [Google Scholar] [CrossRef]
- Sanford, J.; Moreland, J.; Swanson, L.R.; Stratford, P.W.; Gowland, C. Reliability of the Fugl-Meyer Assessment for Testing Motor Performance in Patients Following Stroke. Phys. Ther. 1993, 73, 447–454. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Smith, M.B. Interrater Reliability of a Modified Ashworth Scale of Muscle Spasticity. Phys. Ther. 1987, 67, 206–207. [Google Scholar] [CrossRef]
- Graham, J.V.; Eustace, C.; Brock, K.; Swain, E.; Irwin-Carruthers, S. The Bobath Concept in Contemporary Clinical Practice. Top. Stroke Rehabilit. 2009, 16, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, A.; Veerbeek, J.M.; Held, J.P.O.; Buurke, J.H.; Luft, A.R. Measures of Interjoint Coordination Post-stroke Across Different Upper Limb Movement Tasks. Front. Bioeng. Biotechnol. 2021, 8, 620805. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-M.; Shin, D.-C.; Song, C.-H. Canoe game-based virtual reality training to improve trunk postural stability, balance, and upper limb motor function in subacute stroke patients: A randomized controlled pilot study. J. Phys. Ther. Sci. 2016, 28, 2019–2024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, C.-F.; Liaw, L.-J.; Wang, R.-Y.; Su, F.-C.; Hsu, A.-T. Relationship between trunk stability during voluntary limb and trunk movements and clinical measurements of patients with chronic stroke. J. Phys. Ther. Sci. 2015, 27, 2201–2206. [Google Scholar] [CrossRef] [Green Version]
- Richardson, C.; Hodges, P.; Hides, J. Therapeutical Exercise for Lumbopelvic Stabilization. A Motor Control Approach for the Treatment and Prevention of Low Back Pain; Churchill Livingstone: London, UK, 2004. [Google Scholar]
- Olczak, A. Importance of core stability for coordinated movement of the human body in stroke rehabilitation. Neurol. Res. 2021, 44, 7–13. [Google Scholar] [CrossRef]
- Lee, J.-H.; Choi, J.-D. The effects of upper extremity task training with symmetric abdominal muscle contraction on trunk stability and balance in chronic stroke patients. J. Phys. Ther. Sci. 2017, 29, 495–497. [Google Scholar] [CrossRef] [Green Version]
- Beer, R.F.; Ellis, M.; Ms, B.G.H.; Dewald, J.P. Impact of gravity loading on post-stroke reaching and its relationship to weakness. Muscle Nerve 2007, 36, 242–250. [Google Scholar] [CrossRef] [Green Version]
Post-Stroke Group | Study | Control |
---|---|---|
Age (years) mean ± SD | 65.27 ± 10.56 | 66.40 ± 10.40 |
Height (cm) mean ± SD | 166.77 ± 8.39 | 168.67 ± 7.81 |
Weight (kg) mean ± SD | 79.77 ± 13.09 | 78.80 ± 12.82 |
Post-Stroke Groups | Study | Control |
---|---|---|
n = 60 (100%) | 30 (50%) | 30 (50%) |
Female | 15 (50%) | 15 (50%) |
Male | 15 (50%) | 15 (50%) |
Cerebral ischemic stroke (thromboembolic) n/% | 30 (100%) | 30 (100%) |
Time post stroke/episode (weeks) | 5–7 | 5–7 |
Right affected side | 15 (50%) | 15 (50%) |
Left affected side | 15 (50%) | 15 (50%) |
Dominant right hand | 28 (93.3%) | 28 (93.3%) |
Dominant left hand | 2 (6.67%) | 2 (6.67%) |
TCT (points 48–61) ± SD | 53.20 ± 6.31 | 53.63 ± 6.47 |
FMA-UE (points 43–49) ± SD | 45.47 ± 1.87 | 45.50 ± 2.11 |
MAS (degrees 0/1/1+) (examined n) | 0/1/1+ 0/20/10 | 0/1/1+ 0/20/10 |
Before | Study (n = 30) | Control (n = 30) | |||||||
---|---|---|---|---|---|---|---|---|---|
Average Rank | Me | IQR | Average Rank | Me | IQR | Z | p | r | |
Abacus (nr of beads per 30 s) | 33.78 | 29.00 | 20.50 | 26.09 | 23.00 | 9.50 | −1.72 | 0.085 | 0.22 |
Wall (nr of points) | 32.98 | 3.00 | 1.00 | 26.91 | 2.00 | 2.00 | −1.46 | 0.145 | 0.19 |
Vertical fishing-task completion (%) | 32.43 | 91.00 | 21.25 | 27.48 | 78.00 | 32.50 | −1.13 | 0.257 | 0.15 |
Vertical fishing-time (s) | 23.27 | 45.00 | 27.50 | 36.97 | 66.00 | 60.50 | −3.06 | 0.002 | 0.40 |
Vertical fishing-hand movement path coefficient | 29.72 | 1.98 | 0.53 | 30.29 | 1.86 | 0.96 | −0.13 | 0.897 | 0.02 |
Horizontal fishing-task completion (%) | 31.28 | 46.50 | 30.75 | 28.67 | 45.00 | 29.50 | −0.58 | 0.559 | 0.08 |
Horizontal fishing-time (s) | 24.58 | 82.50 | 30.50 | 35.60 | 95.00 | 24.00 | −2.46 | 0.014 | 0.32 |
Horizontal fishing-hand movement path coefficient | 25.93 | 2.10 | 1.19 | 34.21 | 2.88 | 1.48 | −1.85 | 0.064 | 0.24 |
Reaction time-task execution (%) | 33.52 | 100.00 | 0.00 | 26.36 | 100.00 | 100.00 | −2.57 | 0.010 | 0.33 |
Reaction time-time (s) | 33.13 | 152.50 | 44.25 | 26.76 | 122.00 | 92.50 | −1.43 | 0.154 | 0.19 |
Study Group | |||||||
---|---|---|---|---|---|---|---|
Before | After | ||||||
Me | IQR | Me | IQR | Z | p | r | |
Abacus (nr of beads per 30 s) | 29.00 | 20.50 | 43.00 | 17.00 | −4.44 | <0.001 | 0.57 |
Wall (nr of points) | 3.00 | 1.00 | 3.00 | 0.00 | −3.22 | 0.001 | 0.42 |
Vertical fishing-task completion (%) | 91.00 | 21.25 | 100.00 | 0.00 | −3.41 | 0.001 | 0.44 |
Vertical fishing-time (s) | 45.00 | 27.50 | 29.50 | 18.50 | −3.65 | <0.001 | 0.47 |
Vertical fishing-hand movement path coefficient | 1.98 | 0.53 | 1.61 | 0.75 | −3.29 | 0.001 | 0.42 |
Horizontal fishing-task completion (%) | 46.50 | 30.75 | 66.00 | 56.00 | −3.03 | 0.002 | 0.39 |
Horizontal fishing-time (s) | 82.50 | 30.50 | 82.50 | 36.75 | −1.34 | 0.180 | 0.17 |
Horizontal fishing-hand movement path coefficient | 2.10 | 1.19 | 2.07 | 1.70 | −1.14 | 0.254 | 0.15 |
Reaction time-task execution (%) | 100.00 | 0.00 | 100.00 | 0.00 | −1.00 | 0.317 | 0.13 |
Reaction time-time (s) | 152.50 | 44.25 | 121.00 | 29.00 | −4.05 | <0.001 | 0.52 |
Control Group | |||||||
---|---|---|---|---|---|---|---|
Before | After | ||||||
Me | IQR | Me | IQR | Z | p | r | |
Abacus (nr of beads per 30 s) | 23.00 | 9.50 | 28.00 | 14.00 | −4.24 | <0.001 | 0.56 |
Wall (nr of points) | 2.00 | 2.00 | 3.00 | 1.00 | −3.42 | 0.001 | 0.45 |
Vertical fishing-task completion (%) | 78.00 | 32.50 | 100.00 | 9.00 | −3.48 | <0.001 | 0.46 |
Vertical fishing-time (s) | 66.00 | 60.50 | 57.00 | 49.50 | −3.30 | 0.001 | 0.43 |
Vertical fishing-hand movement path coefficient | 1.86 | 0.96 | 1.67 | 0.69 | −2.48 | 0.013 | 0.33 |
Horizontal fishing-task completion (%) | 45.00 | 29.50 | 75.00 | 45.50 | −3.28 | 0.001 | 0.43 |
Horizontal fishing-time (s) | 95.00 | 24.00 | 89.00 | 30.50 | −2.97 | 0.003 | 0.39 |
Horizontal fishing-hand movement path coefficient | 2.88 | 1.48 | 2.63 | 1.71 | −2.02 | 0.044 | 0.26 |
Reaction time-task execution (%) | 100.00 | 100.00 | 100.00 | 0.00 | −1.41 | 0.157 | 0.19 |
Reaction time-time (s) | 122.00 | 92.50 | 113.00 | 61.50 | −4.37 | <0.001 | 0.57 |
After | Study (n = 30) | Control (n = 30) | |||||||
---|---|---|---|---|---|---|---|---|---|
Average Rank | Me | IQR | Average Rank | Me | IQR | Z | p | r | |
Abacus (nr of beads per 30 s) | 39.07 | 43.00 | 17.00 | 20.62 | 28.00 | 14.00 | −4.13 | <0.001 | 0.54 |
Wall (nr of points) | 35.20 | 3.00 | 0.00 | 24.62 | 3.00 | 1.00 | −2.95 | 0.003 | 0.38 |
Vertical fishing-task completion (%) | 33.68 | 100.00 | 0.00 | 26.19 | 100.00 | 9.00 | −2.10 | 0.036 | 0.27 |
Vertical fishing-time (s) | 21.10 | 29.50 | 18.50 | 39.21 | 57.00 | 49.50 | −4.05 | <0.001 | 0.53 |
Vertical fishing-hand movement path coefficient | 27.18 | 1.61 | 0.75 | 32.91 | 1.67 | 0.69 | −1.28 | 0.200 | 0.17 |
Horizontal fishing-task completion (%) | 30.27 | 66.00 | 56.00 | 29.72 | 75.00 | 45.50 | −0.12 | 0.903 | 0.02 |
Horizontal fishing-time (s) | 27.38 | 82.50 | 36.75 | 32.71 | 89.00 | 30.50 | −1.19 | 0.234 | 0.16 |
Horizontal fishing-hand movement path coefficient | 26.88 | 2.07 | 1.70 | 33.22 | 2.63 | 1.71 | −1.42 | 0.156 | 0.18 |
Reaction time-task execution (%) | 33.00 | 100.00 | 0.00 | 26.90 | 100.00 | 0.00 | −2.61 | 0.009 | 0.34 |
Reaction time-time (s) | 33.72 | 121.00 | 29.00 | 26.16 | 113.00 | 61.50 | −1.69 | 0.091 | 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olczak, A.; Truszczyńska-Baszak, A.; Stępień, A. The Use of Armeo®Spring Device to Assess the Effect of Trunk Stabilization Exercises on the Functional Capabilities of the Upper Limb—An Observational Study of Patients after Stroke. Sensors 2022, 22, 4336. https://doi.org/10.3390/s22124336
Olczak A, Truszczyńska-Baszak A, Stępień A. The Use of Armeo®Spring Device to Assess the Effect of Trunk Stabilization Exercises on the Functional Capabilities of the Upper Limb—An Observational Study of Patients after Stroke. Sensors. 2022; 22(12):4336. https://doi.org/10.3390/s22124336
Chicago/Turabian StyleOlczak, Anna, Aleksandra Truszczyńska-Baszak, and Adam Stępień. 2022. "The Use of Armeo®Spring Device to Assess the Effect of Trunk Stabilization Exercises on the Functional Capabilities of the Upper Limb—An Observational Study of Patients after Stroke" Sensors 22, no. 12: 4336. https://doi.org/10.3390/s22124336