Fully Textile Dual-Band Logo Antenna for IoT Wearable Devices
Abstract
:1. Introduction
2. Antenna Design and Fabrication Process
2.1. Antenna Geometry
2.2. Materials and Methods
2.2.1. Materials
2.2.2. Methods and Models
2.3. Antenna Prototype Fabrication Process
3. Results and Discussions
3.1. Simulated Results
3.1.1. Reflection Coefficient
3.1.2. Radiation Patterns
3.1.3. Gain, Efficiency, and Front-to-Back Ratio
3.1.4. Specific-Absorption Rate
3.2. Measured Results
3.3. Comparison
3.4. Applications
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Al-Sehemi, A.G.; Al-Ghamdi, A.A.; Dishovsky, N.T.; Atanasov, N.T.; Atanasova, G.L. Design of a flexible waterproof antenna for Internet of Things applications. J. Electromagn. Waves Appl. 2021, 35, 874–887. [Google Scholar] [CrossRef]
- Al-Sehemi, A.; Al-Ghamdi, A.; Dishovsky, N.; Atanasova, G.; Atanasov, N. A flexible broadband antenna for IoT applications. Int. J. Microw. Wirel. Technol. 2020, 12, 531–540. [Google Scholar] [CrossRef]
- Gómez, M.E.D.C.; Álvarez, H.F.; Berdasco, A.F.; Andrés, F.L.-H. Paving the Way to Eco-Friendly IoT Antennas: Tencel-Based Ultra-Thin Compact Monopole and Its Applications to ZigBee. Sensors 2020, 20, 3658. [Google Scholar] [CrossRef] [PubMed]
- Jagan, G.C.; Jayarin, P.J. Modern Resource Conservation Strategies to Develop Multifaceted Applications of Wireless Sensor Networks: A Review. In Proceedings of the 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT), Chennai, India, 10–11 March 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE Internet Things J. 2018, 5, 450–465. [Google Scholar] [CrossRef] [Green Version]
- Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial Internet of Things: Challenges, Opportunities, and Directions. IEEE Trans. Ind. Inform. 2018, 14, 4724–4734. [Google Scholar] [CrossRef]
- Ali, M.U.; Mishra, B.K.; Thakker, D.; Mazumdar, S.; Simpson, S. Using Citizen Science to Complement IoT Data Collection: A Survey of Motivational and Engagement Factors in Technology-Centric Citizen Science Projects. IoT 2021, 2, 275–309. [Google Scholar] [CrossRef]
- Poulter, A.J.; Cox, S.J. Enabling Secure Guest Access for Command-and-Control of Internet of Things Devices. IoT 2021, 2, 236–248. [Google Scholar] [CrossRef]
- Desai, B.A.; Divakaran, D.M.; Nevat, I.; Peter, G.W.; Gurusamy, M. A feature-ranking framework for IoT device classification. In Proceedings of the 2019 11th International Conference on Communication Systems & Networks (COMSNETS), Bengaluru, India, 7–11 January 2019; pp. 64–71. [Google Scholar] [CrossRef]
- Al-Sehemi, A.; Al-Ghamdi, A.; Dishovsky, N.; Atanasova, G.; Atanasov, N. A Flexible Planar Antenna on Multilayer Rubber Composite for Wearable Devices. Prog. Electromagn. Res. C 2017, 75, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Loss, C.; Gonçalves, R.; Lopes, C.; Pinho, P.; Salvado, R. Smart Coat with a Fully-Embedded Textile Antenna for IoT Applications. Sensors 2016, 16, 938. [Google Scholar] [CrossRef]
- Commission Staff Working Document. Preliminary Report—Sector inquiry into Consumer Internet of Things. In Proceedings of the European Commission, Brussels, Belgium, 9 June 2021.
- Alhmiedat, T.; Aborokbah, M. Social Distance Monitoring Approach Using Wearable Smart Tags. Electronics 2021, 10, 2435. [Google Scholar] [CrossRef]
- Sreelakshmy, R.; Kumar, S.A.; Shanmuganantham, T. A wearable type embroidered logo antenna at ISM band for military applications. Microw. Opt. Technol. Lett. 2017, 59, 2159–2163. [Google Scholar] [CrossRef]
- Kumar, V. Logo based dipole antenna for RFID applications. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 1–2 August 2017; pp. 3889–3891. [Google Scholar] [CrossRef]
- Dang, Q.H.; Chen, S.J.; Ranasinghe, D.C.; Fumeaux, C. A Frequency-Reconfigurable Wearable Textile Antenna With One-Octave Tuning Range. IEEE Trans. Antennas Propag. 2021, 69, 8080–8089. [Google Scholar] [CrossRef]
- Dang, Q.H.; Chen, S.J.; Ranasinghe, D.C.; Fumeaux, C. Modular Integration of a Passive RFID Sensor With Wearable Textile Antennas for Patient Monitoring. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 1979–1988. [Google Scholar] [CrossRef]
- Ashyap, A.Y.I.; Dahlan, S.H.; Abidin, Z.Z.; Dahri, M.H.; Majid, H.A.; Kamarudin, M.R.; Yee, S.K.; Jamaluddin, M.H.; Alomainy, A.; Abbasi, Q.H. Robust and Efficient Integrated Antenna With EBG-DGS Enabled Wide Bandwidth for Wearable Medical Device Applications. IEEE Access 2020, 8, 56346–56358. [Google Scholar] [CrossRef]
- Atanasova, G.; Atanasov, N. Small Antennas for Wearable Sensor Networks: Impact of the Electromagnetic Properties of the Textiles on Antenna Performance. Sensors 2020, 20, 5157. [Google Scholar] [CrossRef]
- Atanasov, N.T.; Atanasova, G.L.; Atanasov, B.N. Wearable Textile Antennas with High Body-Area Isolation:Design, Fabrication, and Characterization Aspects. In Modern Printed Circuit Antennas, 1st ed.; Al-Rizzo, H., Ed.; IntechOpen: London, UK, 2020; Volume 1, pp. 143–157. [Google Scholar] [CrossRef] [Green Version]
- Simorangkir, R.B.V.B.; Yang, Y.; Matekovits, L.; Esselle, K.P. Dual-Band Dual-Mode Textile Antenna on PDMS Substrate for Body-Centric Communications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 677–680. [Google Scholar] [CrossRef]
- Simorangkir, R.B.V.B.; Kiourti, A.; Esselle, K.P. UWB Wearable Antenna with a Full Ground Plane Based on PDMS-Embedded Conductive Fabric. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 493–496. [Google Scholar] [CrossRef]
- Al-Sehemi, A.; Al-Ghamdi, A.; Dishovsky, N.; Atanasova, G.; Atanasov, N. Flexible polymer/fabric fractal monopole antenna for wideband applications. IET Microw. Antennas Propag. 2020, 15, 80–92. [Google Scholar] [CrossRef]
- Memon, A.W.; de Paula, I.L.; Malengier, B.; Vasile, S.; Van Torre, P.; Van Langenhove, L. Breathable Textile Rectangular Ring Microstrip Patch Antenna at 2.45 GHz for Wearable Applications. Sensors 2021, 21, 1635. [Google Scholar] [CrossRef]
- Bait-Suwailam, M.M.; Labiano, I.I.; Alomainy, A. Impedance Enhancement of Textile Grounded Loop Antenna Using High-Impedance Surface (HIS) for Healthcare Applications. Sensors 2020, 20, 3809. [Google Scholar] [CrossRef] [PubMed]
- Elias, N.A.; Samsuri, N.A.; Rahim, M.K.A.; Othman, N.; Jalil, M.E. Effects of human body and antenna orientation on dipole textile antenna performance and SAR. In Proceedings of the 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), Melaka, Malaysia, 11–13 December 2012; pp. 132–136. [Google Scholar] [CrossRef]
- Rashid, M.M.U.; Rahman, A.; Paul, L.C.; Sarkar, A.K. Performance Evaluation of a Wearable 2.45 GHz Planar Printed Meandering Monopole Textile Antenna on Flexible Substrates. In Proceedings of the 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), Dhaka, Bangladesh, 3–5 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Ashraf, J.; Jabbar, A.; Arif, A.; Riaz, K.; Zubair, M.; Mehmood, M.Q. A Textile Based Wideband Wearable Antenna. In Proceedings of the 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad, Pakistan, 12–16 January 2021; pp. 938–941. [Google Scholar] [CrossRef]
- Gao, G.; Yang, C.; Hu, B.; Zhang, R.; Wang, S. A Wide-Bandwidth Wearable All-Textile PIFA With Dual Resonance Modes for 5 GHz WLAN Applications. IEEE Trans. Antennas Propag. 2019, 67, 4206–4211. [Google Scholar] [CrossRef]
- Yang, H.; Azeez, H.I.; Wu, C.-K.; Chen, W.-S. “Design of a fully textile dualband patch antenna using denim fabric”. In Proceedings of the 2017 IEEE International Conference on Computational Electromagnetics (ICCEM), Kumamoto, Japan, 8–10 March 2017; pp. 185–187. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Badhai, R.K. Design and Analysis of Flexible Microstrip Antenna for Wearable Applications at ISM Band. In Proceedings of the 2020 IEEE 17th India Council International Conference (INDICON), New Delhi, India, 10–13 December 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Sanz-Izquierdo, B.; Huang, F.; Batchelor, J.C. Covert dual-band wearable button antenna. Electron. Lett. 2006, 42, 668–670. [Google Scholar] [CrossRef]
- Sayem, A.S.M.; Esselle, K.P. A Unique, Compact, Lightweight, Flexible and Unobtrusive Antenna for the Applications in Wireless Body Area Networks. In Proceedings of the 2019 13th International Conference on Signal Processing and Communication Systems (ICSPCS), Gold Coast, Australia, 16–18 December 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Mantash, M.; Tarot, A.-C.; Collardey, S.; Mahdjoubi, K. Zip based monopole antenna for wearable communication systems. In Proceedings of the 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 26–30 March 2012; pp. 762–764. [Google Scholar] [CrossRef]
- Alil, S.M.; Cheab, S.; Socheatra, S.; Jeoti, V.; Saeidi, T.; Abidin, Z.Z. A Robust Wearable Unique-Logo Wideband Antenna for 5G Applications. In Proceedings of the 2020 IEEE Student Conference on Research and Development (SCOReD), Batu Pahat, Malaysia, 27–29 September 2020; pp. 284–288. [Google Scholar] [CrossRef]
- Li, W.; Chung, K.L.; Li, Y. Characteristic Mode Design of Chanel-Logo Shaped Antenna. In Proceedings of the 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT), Shenzhen, China, 13–15 November 2020; pp. 806–808. [Google Scholar] [CrossRef]
- Monti, G.; Corchia, L.; Tarricone, L. Logo antenna on textile materials. In Proceedings of the 2014 44th European Microwave Conference, Rome, Italy, 6–9 October 2014; pp. 516–519. [Google Scholar] [CrossRef]
- Shikder, K.; Arifin, F. Extended UWB wearable logo textile antenna for body area network applications. In Proceedings of the 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh, 13–14 May 2016; pp. 484–489. [Google Scholar] [CrossRef]
- Jørgensen, K.L.; Jakobsen, K.B. Logo antenna for 5.8 GHz wireless communications. In Proceedings of the 2016 International Workshop on Antenna Technology (iWAT), Cocoa Beach, FL, USA, 29 February–2 March 2016; pp. 165–166. [Google Scholar] [CrossRef]
- Tak, J.; Choi, J. An All-Textile Louis Vuitton Logo Antenna. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1211–1214. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Dey, S. Design, performance and implementation of UWB wearable logo textile antenna. In Proceedings of the 2012 15 International Symposium on Antenna Technology and Applied Electromagnetics, Toulouse, France, 25–28 June 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Saha, P.; Mandal, B.; Chatterjee, A.; Parui, S.K. Harmes Paris logo shaped wearable antenna for multiband applications. In Proceedings of the 2016 Asia-Pacific Microwave Conference (APMC), New Delhi, India, 5–9 December 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Tumsare, K.V.; Zade, P.L. Dual band logo antenna for WLAN application. In Proceedings of the 2016 World Conference on Futuristic Trends in Research and Innovation for Social Welfare (Startup Conclave), Coimbatore, India, 29 February–1 March 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Kiourti, A.; Volakis, J.L. Wearable antennas using electronic textiles for RF communications and medical monitoring. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; pp. 1–2. [Google Scholar] [CrossRef]
- Kiourti, A.; Volakis, J.L. Colorful Textile Antennas Integrated into Embroidered Logos. J. Sens. Actuator Netw. 2015, 4, 371–377. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, Y.; Lee, K.; Chung, Y.C. Various wearable embroidery RFID tag antenna using electro-thread. In Proceedings of the 2008 IEEE Antennas and Propagation Society International Symposium, San Diego, CA, USA, 5–11 July 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Monti, G.; Corchia, L.; Tarricone, L. Textile logo antennas. In Proceedings of the 2014 Mediterranean Microwave Symposium (MMS2014), Marrakech, Marocco, 12–14 December 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Monti, G.; Corchia, L.; De Benedetto, E.; Tarricone, L. Wearable logo-antenna for GPS-GSM-based tracking systems. IET Microw. Antennas Propag. 2016, 10, 1332–1338. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design, 3rd ed.; Wiley-Interscience: Noboken, NJ, USA, 2005; pp. 231–282. [Google Scholar]
- Liao, C.-T.; Yang, Z.-K.; Chen, H.-M. Multiple Integrated Antennas for Wearable Fifth-Generation Communication and Internet of Things Applications. IEEE Access 2021, 9, 120328–120346. [Google Scholar] [CrossRef]
- Choi, H.W.; Shin, D.W.; Yang, J.; Lee, S.; Figueiredo, C.; Sinopoli, S.; Ullrich, K.; Jovančić, P.; Marrani, A.; Momentè, R.; et al. Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nat. Commun. 2022, 13, 814. [Google Scholar] [CrossRef]
- Metaxas, A.C.; Meredith, R.J. Industrial Microwave Heating; The Institution of Engineering and Technology: London, UK, 2008; pp. 151–207. [Google Scholar]
- Rahmat-Samii, Y.; Guterman, J.; Moreira, A.A.; Peixeiro, C. Integrated antennas for wireless personal communications. In Modern Antenna Handbook; Balanis, C., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 1079–1142. [Google Scholar]
- Fenn, A.J. Electromagnetics and Antenna Technology; Artech House: London, UK, 2018; pp. 114–121. [Google Scholar]
- Sabban, A. (Ed.) Wideband Wearable Antennas for 5G, IoT, and Medical Applications. In Advanced Radio Frequency Antennas for Modern Communication and Medical Systems; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Sharawi, M.S.; Hammi, O. Design and Applications of Active Integrated Antennas; Artech House: Norwood, MA, USA, 2018; pp. 89–132. [Google Scholar]
- IEEE Std C95.1-2019; IEEE Standards for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. IEEE: New York, NY, USA, 2019.
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524. [Google Scholar] [CrossRef]
Reflector Size 1 | Frequency 2 | VSWR | FBR 3 | Rad. Eff. 4 |
---|---|---|---|---|
0.69λ × 0.35λ | 2.40 | 2.63 | 1.51 | 30.55 |
2.97λ × 2.12λ | 5.47 | 2.25 | 20.40 | 89.80 |
0.69λ × 0.35λ | 2.40 | 2.58 | 28.03 | 29.66 |
2.97λ × 2.12λ | 5.47 | 2.12 | 30.93 | 90.29 |
Cotton-Layer Thickness 1 | Frequency 2 | VSWR | FBR 3 | Rad. Eff. 4 |
---|---|---|---|---|
3.5 | 2.40 | 2.48 | 1.47 | 23.73 |
3.5 | 5.47 | 1.71 | 22.94 | 88.07 |
5.5 | 2.40 | 2.63 | 1.51 | 30.55 |
5.5 | 5.47 | 2.25 | 20.40 | 89.80 |
7.5 | 2.40 | 2.97 | 2.11 | 37.70 |
7.5 | 5.47 | 2.52 | 19.04 | 90.52 |
Materials | Thickness 1 | ε| | σ 2 | Density 3 |
---|---|---|---|---|
Polyester | 0.5 | 1.49797 | 0.000852 | 1380 |
Polar fleece | 1 | 1.06615 | 0.000676 | 200 |
Cotton | 5.5 | 1.58710 | 0.010976 | 1520 |
Numerical Models | Dimensions 1 | ε| | σ 2 | Density 3 |
---|---|---|---|---|
Human body (flat phantom) | 340 × 220 × 70 | 40.805 | 2.33000 | 1166 |
Copy-printer paper | 297 × 210 × 50 | 2.555 | 0.04588 | 800 |
Laptop plastic box | 365 × 260 × 30 | 2.789 | 0.01600 | 800 |
References | Proposed Antenna | [19] | [20] | [22] | [23] | [27] | [28] | [29] | [30] | [31] | [32] | [35] | [36] | [41] | [43] | [51] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
REFB FS 1 | 30.55 | - | 60 | 63.5 | - | - | - | - | - | - | - | 15.2 | - | 66 | ||
RESB FS 2 | 90.82 | - | - | 53 | 42 | - | - | - | 74.1 | 85 | - | 64 | 66 | 41.4 | 62 | 78 |
REFB HBP 3 | 24.36 | - | 20 | 58.6 | - | - | - | 12 | - | - | - | - | - | - | ||
RESB HBP 4 | 81.88 | - | - | 50.6 | 40 | - | - | 64.2 | 19 | - | - | - | - | - | - | |
SARFB 10 g 5 | 0.518 | 0.26 | 1.5 | - | - | 3.2 | 1.14 | 1.96 | - | 1.33 | - | - | - | - | - | |
SARSB 10 g 6 | 0.164 | - | - | - | - | - | - | 0.41 | 0.5 | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atanasova, G.L.; Atanasov, B.N.; Atanasov, N.T. Fully Textile Dual-Band Logo Antenna for IoT Wearable Devices. Sensors 2022, 22, 4516. https://doi.org/10.3390/s22124516
Atanasova GL, Atanasov BN, Atanasov NT. Fully Textile Dual-Band Logo Antenna for IoT Wearable Devices. Sensors. 2022; 22(12):4516. https://doi.org/10.3390/s22124516
Chicago/Turabian StyleAtanasova, Gabriela Lachezarova, Blagovest Nikolaev Atanasov, and Nikolay Todorov Atanasov. 2022. "Fully Textile Dual-Band Logo Antenna for IoT Wearable Devices" Sensors 22, no. 12: 4516. https://doi.org/10.3390/s22124516
APA StyleAtanasova, G. L., Atanasov, B. N., & Atanasov, N. T. (2022). Fully Textile Dual-Band Logo Antenna for IoT Wearable Devices. Sensors, 22(12), 4516. https://doi.org/10.3390/s22124516