Sleep Measurement Using Wrist-Worn Accelerometer Data Compared with Polysomnography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Details
2.2.1. Polysomnography
2.2.2. Accelerometers
2.3. Data Processing
2.4. Statistical Analysis
3. Results
3.1. Epoch-by-Epoch Agreement, Sensitivity, and Specificity
3.2. Analysis of ‘Sleep Onset Rule’ and ‘Device’
4. Discussion
4.1. Agreement, Sensitivity, and Specificity
4.2. Total Sleep Time
4.3. Sleep Onset Latency
4.4. Wake after Sleep Onset
4.5. Sleep Efficiency
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watson, N.F.; Safwan Badr, M.; Belenky, G.; Bliwise, D.L.; Buxton, O.M.; Buysse, D.; Dinges, D.F.; Gangwisch, J.; Grandner, M.A.; Kushida, C.; et al. Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society on the Recommended Amount of Sleep for a Healthy Adult: Methodology and Discussion Consensus. Sleep 2015, 38, 1161–1183. [Google Scholar] [CrossRef] [PubMed]
- Magee, C.A.C.A.; Caputi, P.; Iverson, D.C.D.C. Relationships between self-rated health, quality of life and sleep duration in middle aged and elderly Australians. Sleep Med. 2011, 12, 346–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buxton, O.M.; Marcelli, E. Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States. Soc. Sci. Med. 2010, 71, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Sonni, A.; Spencer, R.M.C. Sleep protects memories from interference in older adults. Neurobiol. Aging 2015, 36, 2272–2281. [Google Scholar] [CrossRef] [Green Version]
- Rogers, N.L.; Dorrian, J.; Dinges, D.F. Sleep, waking and neurobehavioural performance. Front. Biosci. 2003, 8, S1056–S1067. [Google Scholar] [CrossRef] [Green Version]
- Robertson, M.D.; Russell-Jones, D.; Umpleby, A.M.; Dijk, D.J. Effects of three weeks of mild sleep restriction implemented in the home environment on multiple metabolic and endocrine markers in healthy young men. Metabolism 2013, 62, 204–211. [Google Scholar] [CrossRef] [Green Version]
- Leproult, R.; Van Reeth, O.; Byrne, M.M.; Sturis, J.; Van Cauter, E. Sleepiness, Performance, and Neuroendocrine Function during Sleep Deprivation: Effects of Exposure to Bright Light or Exercise. J. Biol. Rhythms 1997, 12, 245–258. [Google Scholar] [CrossRef]
- Banks, S.; Dinges, D.F. Behavioral and physiological consequences of sleep restriction. J. Clin. Sleep Med. 2007, 3, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Byun, J.-H.; Kim, K.T.; Moon, H.-J.; Motamedi, G.K.; Cho, Y.W. The first night effect during polysomnography, and patients’ estimates of sleep quality. Psychiatry Res. 2019, 274, 27–29. [Google Scholar] [CrossRef]
- Piwek, L.; Ellis, D.A.; Andrews, S.; Joinson, A. The Rise of Consumer Health Wearables: Promises and Barriers. PLoS Med. 2016, 13, e1001953. [Google Scholar] [CrossRef]
- Zinkhan, M.; Kantelhardt, J.W. Sleep Assessment in Large Cohort Studies with High-Resolution Accelerometers. Sleep Med. Clin. 2016, 11, 469–488. [Google Scholar] [CrossRef] [PubMed]
- De Souza, L.; Benedito-Silva, A.A.A.; Pires, M.L.N.; Poyares, D.; Tufik, S.; Calil, H.M. Further Validation of Actigraphy for Sleep Studies. Sleep 2003, 26, 81–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino, M.; Li, Y.; Rueschman, M.N.; Winkelman, J.W.; Ellenbogen, J.M.; Solet, J.M.; Dulin, H.; Berkman, L.F.; Buxton, O.M. Measuring Sleep: Accuracy, Sensitivity, and Specificity of Wrist Actigraphy Compared to Polysomnography. Sleep 2013, 36, 1747–1755. [Google Scholar] [CrossRef] [PubMed]
- Ancoli-Israel, S.; Cole, R.; Alessi, C.; Chambers, M.; Moorcroft, W.; Pollak, C.P. The role of actigraphy in the study of sleep and circadian rhythms. Sleep 2003, 26, 342–392. [Google Scholar] [CrossRef] [Green Version]
- Chae, K.Y.; Kripke, D.F.; Poceta, J.S.; Shadan, F.; Jamil, S.M.; Cronin, J.W.; Kline, L.E. Evaluation of immobility time for sleep latency in actigraphy. Sleep Med. 2009, 10, 621–625. [Google Scholar] [CrossRef]
- Pollak, C.P.; Tryon, W.W.; Nagaraja, H.; Dzwonczyk, R. How accurately does wrist actigraphy identify the states of sleep and wakefulness? Sleep 2001, 24, 957–965. [Google Scholar] [CrossRef]
- Tryon, W.W. Issues of Validity in Actigraphic Sleep Assessment. Sleep 2004, 27, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Paquet, J.; Kawinska, A.; Carrier, J. Wake detection capacity of actigraphy during sleep. Sleep 2007, 30, 1362–1369. [Google Scholar] [CrossRef]
- Quante, M.; Kaplan, E.R.; Cailler, M.; Rueschman, M.; Wang, R.; Weng, J.; Taveras, E.M.; Redline, S. Actigraphy-based sleep estimation in adolescents and adults: A comparison with polysomnography using two scoring algorithms. Nat. Sci. Sleep 2018, 10, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Kushida, C.A.; Chang, A.; Gadkary, C.; Guilleminault, C.; Carrillo, O.; Dement, W.C. Comparison of actigraphic, polysomnogrphic, and subjective assessment of sleep parameters in sleep-disordered patients. Sleep Med. 2001, 2, 389–396. [Google Scholar] [CrossRef]
- Fuller, K.L.; Juliff, L.; Gore, C.J.; Peiffer, J.J.; Halson, S.L. Software thresholds alter the bias of actigraphy for monitoring sleep in team-sport athletes. J. Sci. Med. Sport 2017, 20, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oakley, N. Validation with Polysomnography of the Sleep-Watch Sleep/Wake Scoring Algorithm Used by the Actiwatch Activity Monitoring System; Mini Mitter Co., Inc.: Bend, OR, USA, 1997. [Google Scholar]
- Cole, R.J.; Kripke, D.F.; Gruen, W.; Mullaney, D.J.; Gillin, J.C. Automatic Sleep/Wake Identification From Wrist Activity. Sleep 1992, 15, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, L.J.; Westin, A.M.L. A comparison of actigraphy scoring rules used in pediatric research. Sleep Med. 2011, 12, 793–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meltzer, L.J.; Walsh, C.M.; Peightal, A.A. Comparison of Actigraphy Immobility Rules with Polysomnographic Sleep Onset Latency in Children and Adolescents. Sleep Breath 2015, 19, 1415–1423. [Google Scholar] [CrossRef] [PubMed]
- Straczkiewicz, M.; Glynn, N.W.; Harezlak, J. On Placement, Location and Orientation of Wrist-Worn Tri-Axial Accelerometers during Free-Living Measurements. Sensors 2019, 19, 2095. [Google Scholar] [CrossRef] [Green Version]
- Berry, R.B.; Brooks, R.; Gamaldo, C.; Harding, S.M.; Lloyd, R.M.; Quan, S.F.; Troester, M.T.; Vaughn, B.V. AASM Scoring Manual Updates for 2017 (Wersion 2.4). J. Clin. Sleep Med. 2017, 13, 665. [Google Scholar] [CrossRef]
- Dunican, I.C.; Murray, K.; Slater, J.A.; Maddison, K.J.; Jones, M.J.; Dawson, B.; Straker, L.M.; Caldwell, J.A.; Halson, S.L.; Eastwood, P.R. Laboratory and home comparison of wrist-activity monitors and polysomnography in middle-aged adults. Sleep Biol. Rhythms 2018, 16, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Markwald, R.R.; Bessman, S.C.; Reini, S.A.; Drummond, S.P.A.A. Performance of a portable sleep monitoring device in individuals with high versus low sleep efficiency. J. Clin. Sleep Med. 2016, 12, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Laakso, M.-L.L.; Leinonen, L.; Lindblom, N.; Joutsiniemi, S.-L.L.; Kaski, M. Wrist actigraphy in estimation of sleep and wake in intellectually disabled subjects with motor handicaps. Sleep Med. 2004, 5, 541–550. [Google Scholar] [CrossRef]
- Peterson, B.T.; Chiao, P.; Pickering, E.; Freeman, J.; Zammit, G.K.; Ding, Y.; Badura, L.L. Comparison of actigraphy and polysomnography to assess effects of zolpidem in a clinical research unit. Sleep Med. 2012, 13, 419–424. [Google Scholar] [CrossRef]
- Cohen, J. A Power Primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Sadeh, A. The role and validity of actigraphy in sleep medicine: An update. Sleep Med. Rev. 2011, 15, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Unruh, M.L.; Redline, S.; An, M.-W.; Buysse, D.J.; Nieto, F.J.; Yeh, J.-L.; Newman, A.B. Subjective and Objective Sleep Quality and Aging in the Sleep Heart Health Study. J. Am. Geriatr. Soc. 2008, 56, 1218–1227. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, S.; Lapierre, S.; Hudon, C.; Desgagné, A. Factors involved in sleep efficiency: A population-based study of community-dwelling elderly persons. Sleep 2019, 42, zsz038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinkhan, M.; Berger, K.; Hense, S.; Nagel, M.; Obst, A.; Koch, B.; Penzel, T.; Fietze, I.; Ahrens, W.; Young, P.; et al. Agreement of different methods for assessing sleep characteristics: A comparison of two actigraphs, wrist and hip placement, and self-report with polysomnography. Sleep Med. 2014, 15, 1107–1114. [Google Scholar] [CrossRef]
- O’Hare, E.; Flanagan, D.; Penzel, T.; Garcia, C.; Frohberg, D.; Heneghan, C. A comparison of radio-frequency biomotion sensors and actigraphy versus polysomnography for the assessment of sleep in normal subjects. Sleep Breath. 2015, 19, 91–98. [Google Scholar] [CrossRef]
- Mikkelsen, K.B.; Ebajemito, J.K.; Bonmati-Carrion, M.A.; Santhi, N.; Revell, V.L.; Atzori, G.; Della Monica, C.; Debener, S.; Dijk, D.-J.; Sterr, A.; et al. Machine-learning-derived sleep-wake staging from around-the-ear electroencephalogram outperforms manual scoring and actigraphy. J. Sleep Res. 2019, 28, e12786. [Google Scholar] [CrossRef]
- Montgomery-Downs, H.E.; Insana, S.P.; Bond, J.A. Movement toward a novel activity monitoring device. Sleep Breath. 2012, 16, 913–917. [Google Scholar] [CrossRef]
- Sargent, C.; Lastella, M.; Halson, S.L.; Roach, G.D. The validity of activity monitors for measuring sleep in elite athletes. J. Sci. Med. Sport 2016, 19, 848–853. [Google Scholar] [CrossRef]
- Rupp, T.L.; Balkin, T.J. Comparison of Motionlogger Watch and Actiwatch actigraphs to polysomnography for sleep/wake estimation in healthy young adults. Behav. Res. Methods 2011, 43, 1152–1160. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Ortuño, M.M.; Edinger, J.D.; Means, M.K.; Almirall, D. Home is where sleep is: An ecological approach to test the validity of actigraphy for the assessment of insomnia. J. Clin. Sleep Med. 2010, 6, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pigeon, W.R.; Taylor, M.; Bui, A.; Oleynk, C.; Walsh, P.; Bishop, T.M. Validation of the Sleep-Wake Scoring of a New Wrist-Worn Sleep Monitoring Device. J. Clin. Sleep Med. 2018, 14, 1057–1062. [Google Scholar] [CrossRef] [PubMed]
- Chakar, B.; Senny, F.; Poirrier, A.-L.; Cambron, L.; Fanielle, J.; Poirrier, R. Validation of midsagittal jaw movements to measure sleep in healthy adults by comparison with actigraphy and polysomnography. Sleep Sci. 2017, 10, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Shambroom, J.R.; Fábregas, S.E.; Johnstone, J. Validation of an automated wireless system to monitor sleep in healthy adults. J. Sleep Res. 2012, 21, 221–230. [Google Scholar] [CrossRef]
- Slater, J.A.; Botsis, T.; Walsh, J.; King, S.; Straker, L.M.; Eastwood, P.R. Assessing sleep using hip and wrist actigraphy. Sleep Biol. Rhythms 2015, 13, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Tonetti, L.; Pasquini, F.; Fabbri, M.; Belluzzi, M.; Natale, V. Comparison of Two Different Actigraphs with Polysomnography in Healthy Young Subjects. Chronobiol. Int. 2008, 25, 145–153. [Google Scholar] [CrossRef]
- Uchida, S.; Endo, T.; Suenaga, K.; Iwami, H.; Inoue, S.; Fujioka, E.; Imamura, A.; Atsumi, T.; Inagaki, Y.; Kamei, A. Sleep evaluation by a newly developed PVDF sensor non-contact sheet: A comparison with standard polysomnography and wrist actigraphy. Sleep Biol. Rhythms 2011, 9, 178–187. [Google Scholar] [CrossRef]
- Kosmadopoulos, A.; Sargent, C.; Darwent, D.; Zhou, X.; Roach, G.D. Alternatives to polysomnography (PSG): A validation of wrist actigraphy and a partial-PSG system. Behav. Res. Methods 2014, 46, 1032–1041. [Google Scholar] [CrossRef]
- Matsuo, M.; Masuda, F.; Sumi, Y.; Takahashi, M.; Yamada, N.; Ohira, M.H.; Fujiwara, K.; Kanemura, T.; Kadotani, H. Comparisons of Portable Sleep Monitors of Different Modalities: Potential as Naturalistic Sleep Recorders. Front. Neurol. 2016, 7, 110. [Google Scholar] [CrossRef]
- Meltzer, L.J.; Hiruma, L.S.; Avis, K.; Montgomery-Downs, H.; Valentin, J. Comparison of a Commercial Accelerometer with Polysomnography and Actigraphy in Children and Adolescents. Sleep 2015, 38, 1323–1330. [Google Scholar] [CrossRef] [Green Version]
- Sundararajan, K.; Georgievska, S.; te Lindert, B.H.W.; Gehrman, P.R.; Ramautar, J.; Mazzotti, D.R.; Sabia, S.; Weedon, M.N.; van Someren, E.J.W.; Ridder, L.; et al. Sleep classification from wrist-worn accelerometer data using random forests. Sci. Rep. 2021, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Van Hees, V.T.; Sabia, S.; Jones, S.E.; Wood, A.R.; Anderson, K.N.; Kivimäki, M.; Frayling, T.M.; Pack, A.I.; Bucan, M.; Trenell, M.I.; et al. Estimating sleep parameters using an accelerometer without sleep diary. Sci. Rep. 2018, 8, 12975. [Google Scholar] [CrossRef] [PubMed]
Device Median (IQR) | Sleep Onset Rule Median (IQR) | ||||
---|---|---|---|---|---|
Sleep Measure | PSG | AG | 1 | 5 | 10 |
TST (min) | 411.0 [321.0–447.0] | 431.0 [348.0–465.0] | 427.5 [347.3–456.3] | 426.0 [347.0–456.3] | 426.0 [332.8–453.3] |
SOL (min) | 19.0 [10.0–34.0] | 1.0 [0.0–8.0] | 7.5 [0.3–18.3] | 9.5 [1.3–18.3] | 11.0 [5.3–23.3] |
WASO (min) | 25.0 [13.0–32.0] | 16.0 [10.0–29.0] | 23.5 [13.5–31.3] | 20.5 [13.0–31.3] | 20.5 [13.0–31.3] |
SE (%) | 89.0 [92.1–96.0] | 94.7 [91.5–97.2] | 91.7 [89.0–95.5] | 91.7 [88.9–95.2] | 91.5 [87.6–94.9] |
SE_ASLEEP (%) | 93.5 [92.6–96.1] | 96.1 [93.2–97.2] | 95.5 [93.1–97.0] | 96.5 [93.2–97.0] | 96.5 [93.4–97.0] |
Agreement (%) | Sensitivity (%) | Specificity (%) | |
---|---|---|---|
1 | 89.0 | 97.2 | 25.1 |
5 | 89.2 | 97.2 | 23.7 |
10 | 89.5 | 97.2 | 23.6 |
Effect Size Cohen’s d (95% CI) | |||||
---|---|---|---|---|---|
Sleep Measure | PSG | AG | |||
5 | 10 | 1 | 5 | 10 | |
TST (min) | 0.03 (−0.64, 0.69) | 0.01 (−0.68, 0.69) | −0.31 * (−1.03, 0.37) | −0.30 * (−0.94, 0.37) | −0.28 * (−1.01, 0.4) |
SOL (min) | −0.07 (−0.75, 0.60) | −0.13 (−0.78, 0.55) | 1.46 ‡ (1.11, 2.59) | 1.28 ‡ (0.92, 2.18) | 1.09 ‡ (0.72, 1.84) |
WASO (min) | 0.02 (−0.64, 0.69) | 0.02 (−0.64, 0.74) | 0.31 * (−0.40, 0.93) | 0.38 * (−0.26, 1.02) | 0.42 * (−0.24, 1.00) |
SE (%) | 0.05 (−0.64, 0.69) | 0.11 (−0.52, 0.77) | −1.37 ‡ (−2.28, −0.82) | −1.32 ‡ (−2.15, −0.74) | −1.18 ‡ (−1.19, −0.60) |
SE_ASLEEP (%) | −0.02 (−0.70, 0.64) | −0.03 (−0.65, 0.62) | −0.53 † (−1.22, 0.14) | −0.61 † (−1.29, 0.00) | −0.64 † (−1.37, −0.04) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chase, J.D.; Busa, M.A.; Staudenmayer, J.W.; Sirard, J.R. Sleep Measurement Using Wrist-Worn Accelerometer Data Compared with Polysomnography. Sensors 2022, 22, 5041. https://doi.org/10.3390/s22135041
Chase JD, Busa MA, Staudenmayer JW, Sirard JR. Sleep Measurement Using Wrist-Worn Accelerometer Data Compared with Polysomnography. Sensors. 2022; 22(13):5041. https://doi.org/10.3390/s22135041
Chicago/Turabian StyleChase, John D., Michael A. Busa, John W. Staudenmayer, and John R. Sirard. 2022. "Sleep Measurement Using Wrist-Worn Accelerometer Data Compared with Polysomnography" Sensors 22, no. 13: 5041. https://doi.org/10.3390/s22135041
APA StyleChase, J. D., Busa, M. A., Staudenmayer, J. W., & Sirard, J. R. (2022). Sleep Measurement Using Wrist-Worn Accelerometer Data Compared with Polysomnography. Sensors, 22(13), 5041. https://doi.org/10.3390/s22135041