Predictors of Step Length from Surface Electromyography and Body Impedance Analysis Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Step Length Measurement
2.3. sEMG Measurement
2.4. BIA
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bohannon, R.W.; Andrews, A.W. Normal walking speed: A descriptive meta-analysis. Physiotherapy 2011, 97, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Han, D.; Kim, J.; Lee, S. Whole-body vibration combined with treadmill training improves walking performance in post-stroke patients: A randomized controlled trial. Med. Sci. Monit. 2017, 23, 4918–4925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuchi, C.A.; Fukuchi, R.K.; Duarte, M. Effects of walking speed on gait biomechanics in healthy participants: A systematic review and meta-analysis. Syst. Rev. 2019, 8, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirelman, A.; Bonato, P.; Camicioli, R.; Ellis, T.D.; Giladi, N.; Hamilton, J.L.; Hass, C.J.; Hausdorff, J.M.; Pelosin, E.; Almeida, Q.J. Gait impairments in Parkinson’s disease. Lancet Neurol. 2019, 18, 697–708. [Google Scholar] [CrossRef]
- Beauchet, O.; Annweiler, C.; Callisaya, M.L.; De Cock, A.-M.; Helbostad, J.L.; Kressig, R.W.; Srikanth, V.; Steinmetz, J.-P.; Blumen, H.M.; Verghese, J.; et al. Poor gait performance and prediction of dementia: Results from a meta-analysis. J. Am. Med. Dir. Assoc. 2016, 17, 482–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.; Park, J.; Lee, B.-I.; Shin, K.J.; Yoo, S.; Kim, H.; Jang, W.; Kim, J.S.; Youn, J.; Oh, E. The correlation between cognition screening scores and gait status from three-dimensional gait analysis. J. Clin. Neurol. 2019, 15, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Paeng, S.H.; Kang, S.Y. Stimulation in supplementary motor area versus motor cortex for freezing of gait in Parkinson’s disease. J. Clin. Neurol. 2018, 14, 320–326. [Google Scholar] [CrossRef]
- Song, S.; Geyer, H. Predictive neuromechanical simulations indicate why walking performance declines with ageing. J. Physiol. 2018, 596, 1199–1210. [Google Scholar] [CrossRef]
- Moraes, A.G.; Neri, S.G.R.; Motl, R.W.; Tauil, C.B.; von Glehn, F.; Corrêa, É.C.; de David, A.C. Effect of hippotherapy on walking performance and gait parameters in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 43, 102203. [Google Scholar] [CrossRef]
- Hollman, J.H.; McDade, E.M.; Petersen, R.C. Normative spatiotemporal gait parameters in older adults. Gait Posture 2011, 34, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Young, P.M.M.; Dingwell, J.B. Voluntarily changing step length or step width affects dynamic stability of human walking. Gait Posture 2012, 35, 472–477. [Google Scholar] [CrossRef] [Green Version]
- de Ruiter, C.J.; van Dieën, J.H. Stride and step length obtained with inertial measurement units during maximal sprint acceleration. Sports 2019, 7, 202. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Molinero, A.; Herrero-Larrea, A.; Miñarro, A.; Narvaiza, L.; Gálvez-Barrón, C.; León, N.G.; Valldosera, E.; de Mingo, E.; Macho, O.; Aivar, D.; et al. The spatial parameters of gait and their association with falls, functional decline and death in older adults: A prospective study. Sci. Rep. 2019, 9, 8813. [Google Scholar] [CrossRef] [Green Version]
- Abe, T.; Ogawa, M.; Loenneke, J.P.; Thiebaud, R.S.; Loftin, M.; Mitsukawa, N. Relationship between site-specific loss of thigh muscle and gait performance in women: The HIREGASAKI study. Arch. Gerontol. Geriatr. 2012, 55, e21–e25. [Google Scholar] [CrossRef]
- Abe, T.; Loenneke, J.P.; Thiebaud, R.S.; Fukunaga, T. Age-related site-specific muscle wasting of upper and lower extremities and trunk in Japanese men and women. Age 2014, 36, 813–821. [Google Scholar] [CrossRef]
- Barbosa-Silva, M.C.G.; Barros, A.J. Bioelectrical impedance analysis in clinical practice: A new perspective on its use beyond body composition equations. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 311–317. [Google Scholar] [CrossRef]
- Maranesi, E.; Fioretti, S.; Ghetti, G.G.; Rabini, R.A.; Burattini, L.; Mercante, O.; Di Nardo, F. The surface electromyographic evaluation of the Functional Reach in elderly subjects. J. Electromyogr. Kinesiol. 2016, 26, 102–110. [Google Scholar] [CrossRef]
- Riis, J.; Byrgesen, S.M.; Kragholm, K.H.; Mørch, M.M.; Melgaard, D. Validity of the GAITRite walkway compared to functional balance tests for fall risk assessment in geriatric outpatients. Geriatrics 2020, 5, 77. [Google Scholar] [CrossRef]
- Vítečková, S.; Horáková, H.; Poláková, K.; Krupička, R.; Růžička, E.; Brožová, H. Agreement between the GAITRite® System and the Wearable Sensor BTS G-Walk® for measurement of gait parameters in healthy adults and Parkinson’s disease patients. PeerJ 2020, 8, e8835. [Google Scholar] [CrossRef]
- Kwon, K.-Y.; Park, S.; Lee, H.-M.; Park, Y.M.; Kim, J.; Kim, J.; Koh, S.-B. Backward gait is associated with motor symptoms and fear of falling in patients with de novo Parkinson’s disease. J. Clin. Neurol. 2019, 15, 473–479. [Google Scholar] [CrossRef]
- Sugawara, K.; Yoshimura, S.; Yagi, K.; Nishida, M.; Aikou, S.; Yamagata, Y.; Mori, K.; Yamashita, H.; Seto, Y. Long-term health-related quality of life following robot-assisted radical transmediastinal esophagectomy. Surg. Endosc. 2020, 34, 1602–1611. [Google Scholar] [CrossRef]
- Park, J.-W.; Kim, M.; Baek, S.-H.; Sung, J.H.; Yu, J.-G.; Kim, B.-J. Body Fat Percentage and Availability of Oral Food Intake: Prognostic Factors and Implications for Nutrition in Amyotrophic Lateral Sclerosis. Nutrients 2021, 13, 3704. [Google Scholar] [CrossRef]
- Brewer, G.J.; Blue, M.N.M.; Hirsch, K.R.; Saylor, H.E.; Gould, L.M.; Nelson, A.G.; Smith-Ryan, A.E. Validation of InBody 770 bioelectrical impedance analysis compared to a four-compartment model criterion in young adults. Clin. Physiol. Funct. Imaging 2021, 41, 317–325. [Google Scholar] [CrossRef]
- Anderson, L.J.; Erceg, D.N.; Schroeder, E.T. Utility of multifrequency bioelectrical impedance compared with dual-energy x-ray absorptiometry for assessment of total and regional body composition varies between men and women. Nutr. Res. 2012, 32, 479–485. [Google Scholar] [CrossRef]
- Kim, M.; Kim, H. Accuracy of segmental multi-frequency bioelectrical impedance analysis for assessing whole-body and appendicular fat mass and lean soft tissue mass in frail women aged 75 years and older. Eur. J. Clin. Nutr. 2013, 67, 395–400. [Google Scholar] [CrossRef]
- Kim, M.; Shinkai, S.; Murayama, H.; Mori, S. Comparison of segmental multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for the assessment of body composition in a community-dwelling older population. Geriatr. Gerontol. Int. 2015, 15, 1013–1022. [Google Scholar] [CrossRef]
- Ling, C.H.; de Craen, A.J.; Slagboom, P.E.; Gunn, D.A.; Stokkel, M.P.; Westendorp, R.G.; Maier, A.B. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin. Nutr. 2011, 30, 610–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafer, K.J.; Siders, W.A.; Johnson, L.K.; Lukaski, H.C. Validity of segmental multiple-frequency bioelectrical impedance analysis to estimate body composition of adults across a range of body mass indexes. Nutrition 2009, 25, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Morio, Y.; Izawa, K.P.; Omori, Y.; Katata, H.; Ishiyama, D.; Koyama, S.; Yamano, Y. The relationship between walking speed and step length in older aged patients. Diseases 2019, 7, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buddhadev, H.H.; Smiley, A.L.; Martin, P.E. Effects of age, speed, and step length on lower extremity net joint moments and powers during walking. Hum. Mov. Sci. 2020, 71, 102611. [Google Scholar] [CrossRef] [PubMed]
- Fortaleza, A.C.D.S.; Rossi, F.E.; Buonani, C.; Fregonesi, C.E.P.T.; Neves, L.M.; Diniz, T.A.; Freitas Júnior, I. Total body and trunk fat mass and the gait performance in postmenopausal women. Rev. Bras. Ginecol. Obstet. 2014, 36, 176–181. [Google Scholar] [CrossRef] [Green Version]
- LaRoche, D.P.; Kralian, R.J.; Millett, E.D. Fat mass limits lower-extremity relative strength and maximal walking performance in older women. J. Electromyogr. Kinesiol. 2011, 21, 754–761. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.P.; Lin, Y.-C.; Pandy, M.G. Effects of step length and step frequency on lower-limb muscle function in human gait. J. Biomech. 2017, 57, 1–7. [Google Scholar] [CrossRef]
- Flansbjer, U.-B.; Lexell, J.; Brogårdh, C. Predictors of changes in gait performance over four years in persons with late effects of polio. NeuroRehabilitation 2017, 41, 403–411. [Google Scholar] [CrossRef]
- Mañago, M.M.; Hebert, J.R.; Kittelson, J.; Schenkman, M. Contributions of ankle, knee, hip, and trunk muscle function to gait performance in people with multiple sclerosis: A cross-sectional analysis. Phys. Ther. 2018, 98, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Beijersbergen, C.M.I.; Granacher, U.; Gäbler, M.; DeVita, P.; Hortobágyi, T. Hip mechanics underlie lower extremity power training-induced increase in old adults’ fast gait velocity: The Potsdam Gait Study (POGS). Gait Posture 2017, 52, 338–344. [Google Scholar] [CrossRef]
- Stålberg, E.; van Dijk, H.; Falck, B.; Kimura, J.; Neuwirth, C.; Pitt, M.; Podnar, S.; Rubin, D.I.; Rutkove, S.; Sanders, D.B.; et al. Standards for quantification of EMG and neurography. Clin. Neurophysiol. 2019, 130, 1688–1729. [Google Scholar] [CrossRef]
- Roetenberg, D.; Buurke, J.H.; Veltink, P.H.; Forner-Cordero, A.; Hermens, H.J. Surface electromyography analysis for variable gait. Gait Posture 2003, 18, 109–117. [Google Scholar] [CrossRef]
- Chang, M.C.; Park, S.; Cho, J.Y.; Lee, B.J.; Hwang, J.-M.; Kim, K.; Park, D. Comparison of three different types of exercises for selective contractions of supra- and infrahyoid muscles. Sci. Rep. 2021, 11, 7131. [Google Scholar] [CrossRef]
- Monteiro, U.M.; Soares, V.B.R.B.; Soares, C.B.R.B.; Pinto, T.C.C.; Ximenes, R.C.C.; Araújo Cairrão Rodrigues, M. Electromyographic patterns and the identification of subtypes of awake bruxism. Front. Hum. Neurosci. 2020, 14, 601881. [Google Scholar] [CrossRef]
- Nandedkar, S.D.; Barkhaus, P.E.; Stålberg, E.V. Form factor analysis of the surface electromyographic interference pattern. Muscle Nerve 2020, 62, 233–238. [Google Scholar] [CrossRef]
- Vigotsky, A.D.; Halperin, I.; Lehman, G.J.; Trajano, G.S.; Vieira, T.M. Interpreting signal amplitudes in surface electromyography studies in sport and rehabilitation sciences. Front. Physiol. 2018, 8, 985. [Google Scholar] [CrossRef] [Green Version]
- Felici, F.; Del Vecchio, A. Surface electromyography: What limits its use in exercise and sport physiology? Front. Neurol. 2020, 11, 578504. [Google Scholar] [CrossRef]
- Charlton, K.; Batterham, M.; Langford, K.; Lateo, J.; Brock, E.; Walton, K.; Lyons-Wall, P.; Eisenhauer, K.; Green, N.; McLean, C. Lean body mass associated with upper body strength in healthy older adults while higher body fat limits lower extremity performance and endurance. Nutrients 2015, 7, 7126–7142. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.; Silva, R.A.D.; de Oliveira, M.R.; Souza, R.D.; Borges, R.J.; Vieira, E.R. Effect of body mass index and fat mass on balance force platform measurements during a one-legged stance in older adults. Aging Clin. Exp. Res. 2018, 30, 441–447. [Google Scholar] [CrossRef]
- Frimenko, R.; Goodyear, C.; Bruening, D. Interactions of sex and aging on spatiotemporal metrics in non-pathological gait: A descriptive meta-analysis. Physiotherapy 2015, 101, 266–272. [Google Scholar] [CrossRef]
- Tschentscher, M.; Niederseer, D.; Niebauer, J. Health benefits of Nordic walking: A systematic review. Am. J. Prev. Med. 2013, 44, 76–84. [Google Scholar] [CrossRef]
- Glowinski, S.; Krzyzynski, T.; Bryndal, A.; Maciejewski, I. A Kinematic Model of a Humanoid Lower Limb Exoskeleton with Hydraulic Actuators. Sensors 2020, 20, 6116. [Google Scholar] [CrossRef]
Variables (n = 179) | Mean ± SD | Min | Max | Median |
---|---|---|---|---|
Age (years) | 60.0 ± 11.1 | 41 | 79 | 60.5 |
Sex (M:F) | 82:97 | - | - | - |
Height (cm) | 162.7 ± 8.6 | 140 | 182 | 162.25 |
BMI (kg/m2) | 24.6 ± 3.0 | 18.0 | 32.9 | 24.0 |
Average step length (cm) | 62.8 ± 6.8 | 41.0 | 83.1 | 65.6 |
ASM (kg)/(height, m)2 | 7.1 ± 1.1 | 5.2 | 9.4 | 7.0 |
BFM (kg) | 18.9 ± 5.9 | 5.8 | 38.3 | 18.2 |
Average RMS (µV) | ||||
Knee flexion | 321.7 ± 128.8 | 84.4 | 789.2 | 310.8 |
Knee extension | 233.0 ± 100.4 | 41.0 | 558.2 | 218.9 |
Age Group | 40s | 50s | 60s | 70s | p-Value between Age Groups | ||||
---|---|---|---|---|---|---|---|---|---|
n | 40 | 45 | 49 | 45 | |||||
M (n = 16) | W (n = 24) | M (n = 20) | W (n = 25) | M (n = 24) | W (n = 25) | M (n = 22) | W (n = 23) | ||
Age (years) | 45.1 ± 2.6 | 54.1 ± 2.9 | 64.4 ± 3.0 | 74.1 ± 2.6 | - | ||||
44.1 ± 2.7 | 45.7 ± 2.4 | 54.6 ± 3.0 | 53.7 ± 2.9 | 65.1 ± 2.6 | 63.6 ± 3.2 | 75.2 ± 2.7 | 73.0 ± 2.1 | ||
p-Value between sexes | NS | NS | NS | 0.0043 | |||||
Height (cm) | 165.9 ± 7.8 | 164.1 ± 8.1 | 160.6 ± 9.1 | 161.0 ± 8.4 | 0.0093 | ||||
173.1 ± 4.0 | 161.0 ± 5.5 | 171.4 ± 5.2 | 158.4 ± 4.5 | 167.5 ± 6.3 | 154.0 ± 5.7 | 166.6 ± 5.3 | 155.7 ± 7.5 | ||
p-Value between sexes | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |||||
BMI (kg/m2) | 24.2 ± 3.4 | 24.8 ± 3.4 | 25.2 ± 2.5 | 23.9 ± 2.6 | NS | ||||
26.0 ± 3.0 | 23.0 ± 3.2 | 26.3 ± 2.3 | 23.6 ± 3.7 | 25.5 ± 2.2 | 24.9 ± 2.7 | 23.4 ± 2.8 | 24.5 ± 2.3 | ||
p-Value between sexes | 0.0053 | 0.0083 | NS | NS | |||||
Average step length (cm) | 64.4 ± 4.8 | 64.8 ± 5.6 | 62.0 ± 7.0 | 60.2 ± 8.3 | 0.0034 | ||||
65.9 ± 4.2 | 63.4 ± 5.0 | 66.8 ± 6.0 | 63.3 ± 4.8 | 64.3 ± 7.3 | 59.7 ± 6.1 | 62.8 ± 8.4 | 57.8 ± 7.5 | ||
p-Value between sexes | NS | 0.0343 | 0.0183 | 0.0412 | |||||
ASM (kg/m2) | 7.3 ± 1.1 | 7.3 ± 1.2 | 7.2 ± 1.1 | 6.9 ± 0.9 | NS | ||||
8.4 ± 0.5 | 6.5 ± 0.6 | 8.4 ± 0.6 | 6.3 ± 0.6 | 8.0 ± 0.8 | 6.4 ± 0.7 | 7.5 ± 0.7 | 6.3 ± 0.5 | ||
p-Value between sexes | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |||||
BFM (kg) | 18.9 ± 6.4 | 19.3 ± 5.8 | 19.0 ± 5.4 | 18.4 ± 6.2 | NS | ||||
19.2 ± 6.6 | 18.7 ± 6.4 | 18.9 ± 4.1 | 19.7 ± 6.8 | 18.0 ± 5.2 | 19.9 ± 5.4 | 15.6 ± 5.9 | 21.1 ± 5.3 | ||
p-Value between sexes | NS | NS | NS | 0.0017 | |||||
Average RMS: knee flexion (µV) | 348.4 ± 165.1 | 334.2 ± 123.9 | 345.1 ± 112.4 | 260.2 ± 91.8 | 0.0024 | ||||
409.6 ± 165.5 | 307.6 ± 155.0 | 356.0 ± 117.1 | 316.7 ± 128.8 | 386.6 ± 115.4 | 305.2 ± 95.6 | 310.7 ± 97.1 | 211.8 ± 53.3 | ||
p-Value between sexes | NS | NS | 0.0098 | 0.0001 | |||||
Average RMS: knee extension (µV) | 246.0 ± 99.8 | 265.2 ±105.4 | 227.9 ± 87.4 | 194.8 ± 98.9 | 0.0068 | ||||
267.2 ± 112.0 | 231.9 ± 90.4 | 282.9 ± 103.8 | 251.1 ± 106.5 | 252.5 ± 102.9 | 204.3 ± 62.7 | 214.2 ± 120.1 | 176.3 ± 71.2 | ||
p-Value between sexes | NS | NS | NS | NS |
Men (n = 82) | Women (n = 97) | p-Value | |
---|---|---|---|
Average step length (cm) | 64.83 ± 1.52 | 61.09 ± 1.27 | <0.001 |
Height (cm) | 169.30 ± 1.29 | 157.26 ± 1.28 | <0.001 |
average RMS: knee flexion (µV) | 363.24 ± 27.67 | 286.62 ± 24.36 | <0.001 |
BFM (kg) | 17.79 ± 1.22 | 19.85 ± 1.21 | NS |
Model | Variables | R2 | Adjusted R2 | Cp | AIC | BIC | Regression Coefficient | p-Value |
---|---|---|---|---|---|---|---|---|
RMS at maximal strength knee flexion | 0.244 | 0.235 | 7.28 | 642.18 | 644.14 | 0.018 | <0.001 | |
1 | height | 0.23 | <0.001 | |||||
(constant) | 19.506 | 0.023 | ||||||
Age | 0.198 | 0.185 | 3.26 | 654.80 | 657.02 | −0.115 | 0.008 | |
2 | Height | 0.238 | <0.001 | |||||
BFM | −0.235 | 0.003 | ||||||
(constant) | 35.435 | <0.001 | ||||||
3 | Age | 0.158 | 0.148 | 4.43 | 661.61 | 663.66 | −0.109 | 0.013 |
Height | 0.251 | <0.001 | ||||||
(constant) | 28.444 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-W.; Baek, S.-H.; Sung, J.H.; Kim, B.-J. Predictors of Step Length from Surface Electromyography and Body Impedance Analysis Parameters. Sensors 2022, 22, 5686. https://doi.org/10.3390/s22155686
Park J-W, Baek S-H, Sung JH, Kim B-J. Predictors of Step Length from Surface Electromyography and Body Impedance Analysis Parameters. Sensors. 2022; 22(15):5686. https://doi.org/10.3390/s22155686
Chicago/Turabian StylePark, Jin-Woo, Seol-Hee Baek, Joo Hye Sung, and Byung-Jo Kim. 2022. "Predictors of Step Length from Surface Electromyography and Body Impedance Analysis Parameters" Sensors 22, no. 15: 5686. https://doi.org/10.3390/s22155686
APA StylePark, J.-W., Baek, S.-H., Sung, J. H., & Kim, B.-J. (2022). Predictors of Step Length from Surface Electromyography and Body Impedance Analysis Parameters. Sensors, 22(15), 5686. https://doi.org/10.3390/s22155686