Methods of Wood Volume Determining and Its Implications for Forest Transport
Abstract
:1. Introduction
- S1—timber wood; this group includes assortments classified according to its purpose as pitwood and wood for building props,
- S2—stake wood for industrial processing (inter alia, pulpwood),
- S3—round wood for industrial processing (perches), and
- S4—firewood.
- Taking a series of images of a stack of medium or large-sized of round wood.
- Merging of the images into one panoramic image.
- Analysis of the panoramic image in order to:
- Identification of the cross-cut forehead of round wood and counting them,
- Inscribe circles in the cross-cut forehead sections,
- Make a diameter distribution table,
- Inscribing the pile into the polygon and calculating the area of the polygon, and
- Determination of the replacement coefficient from the ratio of the area of the cross-cut foreheads of wood to the area of the polygon or use of a preset coefficient.
- Calculation of the stack volume and preparation of the report.
2. Materials and Methods
2.1. Round Wood Volume Measurement
2.2. Determination of Measurement Error of Wood Volume
2.3. Measurement of Characteristic Parameters of Wood Transports
2.4. Comparison of the Real Total Gross Vehicle Weight of the Transport Set with That Established by Law
3. Results
3.1. Determining the Error in Measuring the Volume of the Stacks Medium-Sized Wood (S2)
3.2. Determining the Error in Measuring the Volume of the Large-Sized Wood (Ls)
3.3. Characteristics of Wood Loads and the Real Total Gross Vehicle Weight of the Transport Set (GVW)
3.4. Comparison of Real GVW with Calculated Values for Medium-Sized (S2) Wood Transports
3.5. Comparison of Real GVW with Calculated Values for Large-Sized (Ls) Wood Transports
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Borz, S.A.; Morocho Toaza, J.M.; Forkuo, G.O.; Marcu, M.V. Potential of Measure App in Estimating Log Biometrics: A Comparison with Conventional Log Measurement. Forests 2022, 13, 1028. [Google Scholar] [CrossRef]
- Brown, M.W. Evaluation of the Impact of Timber Truck Configuration and Tare Weight on Payload Efficiency: An Australian Case Study. Forests 2021, 12, 855. [Google Scholar] [CrossRef]
- Trzciński, G.; Moskalik, T.; Wojtan, R. Total weight and axle loads of truck units in the transport of timber depending on the timber cargo. Forests 2018, 9, 164. [Google Scholar] [CrossRef]
- McKinnon, A.C. The Economic and Environmental Benefits of Increasing Maximum Truck Weight: The British Experience. Transp. Res. Part Transp. Environ. 2005, 10, 77–95. [Google Scholar] [CrossRef]
- Ordinance No. 51 of the Director General of the State Forests on the Introduction of Technical Conditions for the Timber Trading in the State Forests National Forest Holding. Appendix No. 2. Technical Conditions-Rules for Preparation for Measurement, Volume Calculation and Marking of Raw Wood 2019. Available online: 2._zasady_przygotowania_do_pomiaru_-_ujednolicono_wg_zarz_54-2020_v3.pdf+(lasy.gov.pl) (accessed on 1 July 2022). (In Polish)
- Zastocki, D.; Lachowicz, H.; Sadowski, J.; Moskalik, T. Changes in the Assortment and Species Structure of Timber Harvested from the Polish Managed Part of Białowieża Forest. Sustainability 2018, 10, 3279. [Google Scholar] [CrossRef]
- Jodłowski, K.; Moskalik, T.; Tomusiak, R.; Sarzyński, W. The Use of Photo-Optical Systems for Measurement of Stacked Wood. In Proceedings of the From Theory to Practice: Challenges for Forest Engineering, Warsaw, Poland, 4–7 September 2016; Department of Forest Utilization, Warsaw University of Life Sciences-SGGW: Warsaw, Poland, 2016; p. 306. [Google Scholar]
- Siekański, P.; Magda, K.; Malowany, K.; Rutkiewicz, J.; Styk, A.; Krzesłowski, J.; Kowaluk, T.; Zagórski, A. On-Line Laser Triangulation Scanner for Wood Logs Surface Geometry Measurement. Sensors 2019, 19, 1074. [Google Scholar] [CrossRef]
- Janák, K. Differences in Round Woodmeasurements Usingelectronic 2D and 3Dsystems and Standardmanual Method. Drv. Industija 2007, 53, 127–133. [Google Scholar]
- Ciółkowski, F. Accuracy of Mobile Applications for Wood Stacks Volume Determination; Logsize Application Case Study Paperback: Eberswalde, Germany, 2017; ISBN 978-620-2-20654-9. [Google Scholar]
- Knyaz, V.A.; Maksimov, A.A. Photogrammetric Technique for Timber Stack Volume Contol. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 157–162. [Google Scholar] [CrossRef]
- Pásztory, Z.; Polgár, R. Photo Analytical Method for Solid Wood Content Determination of Wood Stacks. J. Adv. Agric. Technol. 2016, 3, 54–57. [Google Scholar] [CrossRef]
- Kruglov, A.V. Development of the Rounded Objects Automatic Detection Method for the Log Deck Volume Measurement. In First International Workshop on Pattern Recognition; Jiang, X., Chen, G., Capi, G., Ishll, C., Eds.; SPIE: Tokyo, Japan, 2016; p. 1001104. [Google Scholar]
- Mehrentsev, A.V.; Kruglov, A.V. The Algorithm and Software for Timber Batch Measurement by Using Image Analysis. In Representations, Analysis and Recognition of Shape and Motion from Imaging Data; Chen, L., Ben Amor, B., Ghorbel, F., Eds.; Springer International Publishing: Cham, Germany, 2019; Volume 842, pp. 56–65. ISBN 978-3-030-19815-2. [Google Scholar]
- Stańczykiewicz, A.; Szewczyk, G.; Tylek, P. Accuracy and time consuming of medium and large-size wood photo-optical measurement. In Proceedings of the Innovative Methods of Wood Measuring in Forestry and the Wood Industry, Poznań, Poland, 17 November 2021; Poznań University of Life Sciences: Poznań, Poland, 2021; p. 10. [Google Scholar]
- Mederski, P.; Jędrzejewska, M.; Borzyszkowski, W.; Krzewina, W. Accuracy of selected photo-optical methods for logs diameters measuring of stacked wood. In Proceedings of the Innovative Methods of Wood Measuring in Forestry and the Wood Industry, Poznań, Poland, 17 November 2021; Poznań University of Life Sciences: Poznań, Poland, 2021; p. 8. [Google Scholar]
- Kärhä, K.; Nurmela, S.; Karvonen, H.; Kivinen, V.-P.; Melkas, T.; Nieminen, M. Estimating the Accuracy and Time Consumption of a Mobile Machine Vision Application in Measuring Timber Stacks. Comput. Electron. Agric. 2019, 158, 167–182. [Google Scholar] [CrossRef]
- Cremer, T.; Berendt, F.; Diez, F.D.M.; Wolfgramm, F.; Blasko, L. Accuracy of Photo-Optical Measurement of Wood Piles. Environ. Sci. Proc. 2020, 3, 90. [Google Scholar] [CrossRef]
- Koirala, A.; Kizhal, A.R.; Roth, B.E. Perceiving Major Problems in Forest Products Transportation by Trucks and Trailers: A Cross-sectional Survey. Eur. J. For. Eng. 2017, 3, 23–34. [Google Scholar]
- Hamsley, A.; Greene, W.G.; Siry, J.; Mendell, B. Improving timber trucking performance by reducing variability of log truck weights. South. J. Appl. For. 2007, 31, 12–16. [Google Scholar] [CrossRef]
- Tymendorf, Ł.; Trzciński, G. Multi-Factorial Load Analysis of Pine sawlogs in Transport to Sawmill. Forests 2020, 11, 366. [Google Scholar] [CrossRef]
- Brown, M. The Impact of Tare Weight on Transportation Efficiency in Australian Forest Operations. In Harvesting and Operations Program, Research Bulletin 3; CRC Forestry Harvesting and Operations Program: Hobart, TAS, Australia, 2008; Available online: https://fgr.nz/documents/download/4740 (accessed on 8 December 2017).
- Ghaffariyan, M.R.; Acuna, M.; Brown, M. Analysing the effect of five operational factors on forest residue supply chain costs: A case study in Western Australia. Biomass Bioenergy 2013, 59, 486–493. [Google Scholar] [CrossRef]
- Owusu−Ababio, S.; Schmitt, R. Analysis of Data on Heavier Truck Weights. Transp. Res. Rec. J. Transp. Res. Board 2015, 2478, 82–92. [Google Scholar] [CrossRef]
- Trzciński, G.; Moskalik, T.; Wojtan, R.; Tymendorf, Ł. Variability of loads and gross vehicle weight in timber transportation. Sylwan 2017, 161, 1026–1034. (In Polish) [Google Scholar]
- Sosa, A.; Acuna, M.; McDonnell, K.; Devlin, G. Controlling moisture content and truck configurations to model and optimise biomass supply chain logistics in Ireland. Appl. Energy 2015, 137, 338–351. [Google Scholar] [CrossRef]
- Kozakiewicz, P.; Tymendorf, Ł.; Trzciński, G. Importance of the Moisture Content of Large-Sized Scots Pine (Pinus sylvestris L.) Roundwood in Its Road Transport. Forests 2021, 12, 879. [Google Scholar] [CrossRef]
- Wagenführ, R. Holzatlas. Mit 890 Zum Teil Mehrfarbigen Bildern (Wooden Atlas. with 890 Partly Multicolored Pictures); VEB Fachbuchverlag Leipzig: Leipzig, Germany, 2007. (In German) [Google Scholar]
- Tomczak, A.; Jelonek, T. Green density of Scots pine (Pinus sylvestris L.) sapwood coming from selected stands north-western Poland. For. Lett. 2014, 107, 5–9. (In Polish) [Google Scholar]
- Shmulsky, R.; Jones, P.D. Forest Products and Wood Science, 6th ed.; Wiley-Blackwell: Chichester, UK; Ames, IA, USA, 2011; ISBN 978-0-8138-2074-3. [Google Scholar]
- Tomczak, A.; Tomczak, K.; Jelonek, T.; Naskrent, B. Within-Stem Differences in Moisture Content Loss during Transpiration and Air-Drying of Felled Oak Trees. Forests 2022, 13, 485. [Google Scholar] [CrossRef]
- Trzciński, G.; Tymendorf, Ł. Timber deliveries after introduction of the normative calculators of wood density to determine the load weight. Sylwan 2017, 161, 451–459. (In Polish) [Google Scholar]
- Liimatainen, H.; Nykänen, L. Impacts of Increasing Maximum Truck Weight—Case Finland; Transport Research Centre Verne: Brno, Czechia; Tampere University of Technology: Tampere, Finland, 2017; Available online: http://www.tut.fi/verne/aineisto/LiimatainenNyk%C3%A4nen.pdf (accessed on 10 January 2021).
- Palander, T.; Kärhä, K. Improving Energy Efficiency in a Synchronized Road-Transportation System by Using a TFMC (Transportation Fleet-Management Control) in Finland. Energies 2019, 12, 670. [Google Scholar] [CrossRef]
- Asmoarp, V.; Enström, J.; Bergqvist, M.; von Hofsten, H. Improving Transport Efficiency–Final Report of the ETT 2014–2016 Project. Skogforsk, 2018, Arbetsrapport 962–2018. Available online: https://www.skogforsk.se/contentassets/d036107f3f2c49ff8d1bfb8d9e122ba1/arbetsrapport-962-2018.pdf (accessed on 1 July 2022).
- Regulation of the Minister of Infrastructure of 31 December 2002 on the Technical Conditions of Vehicles and Their Necessary Equipment. Rozporządzenie Ministra Infrastruktury z Dnia 31 Grudnia 2002 r. w Sprawie Warunków Technicznych Pojazdów Oraz Zakresu Ich Niezbędnego Wyposażenia. Dz.U. 2003 nr 32, poz.262. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20030320262 (accessed on 1 July 2022). (In Polish)
- Lukason, O.; Ukrainski, K.; Varblane, U. Economic benefit of maximum truck weight regulation change for Estonian forest sektor. Veokite täismassi regulatsiooni muutmise majanduslikud mõjud eesti metsatööstuse sektorile. Est. Discuss. Econ. Policy 2011, 19. [Google Scholar]
- Palander, T.; Haavikko, H.; Kortelainen, E.; Kärhä, K.; Borz, S.A. Improving Environmental and Energy Efficiency in Wood Transportation for a Carbon-Neutral Forest Industry. Forests 2020, 11, 1194. [Google Scholar] [CrossRef]
- Pålsson, H.; Hiselius, L.W.; Wandel, S.; Khan, J.; Adell, E. Longer and heavier road freight vehicles in Sweden. Int. J. Phys. Distrib. Logist. Manag. 2017, 47, 603–622. [Google Scholar] [CrossRef]
- Väätäinen, K.; Laitila, J.; Anttila, P.; Kilpeläinen, A.; Asikainen, A. The influence of gross vehicle weight (GVW) and transport distance on timber trucking performance indicators—Discrete event simulation case study in Central Finland. Int. J. For. Eng. 2020, 31, 156–170. [Google Scholar] [CrossRef]
- Liimatainen, H.; Pöllänen, M.; Nykänen, L. Impacts of increasing maximum truck weight—case Finland. Eur. Transp. Res. Rev. 2020, 12, 14. [Google Scholar] [CrossRef]
- Act of 21 March 1985 on Public Roads. (Act of Law). Ustawa z Dnia 21 Marca 1985 r. O Drogach Publicznych. Dz.U. z 2021 poz.1376. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20210001376/U/D20211376Lj.pdf (accessed on 1 July 2022). (In Polish)
- Act of 20 June 1997, Road Traffic Law. (Act of Law). Ustawa z Dnia 20 Czerwca 1997 r. Prawo o Ruchu Drogowym. Dz.U 2021 poz. 450. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20210000450/U/D20210450Lj.pdf (accessed on 1 July 2022). (In Polish)
- Regulation of the Minister of the Environment and the Minister of Economy of 2 May 2012 on the Determination of the Density of the Wood. Rozporządzenie Ministra Środowiska oraz Ministra Gospodarki z Dnia 2 Maja 2012 r. w Sprawie Określenia Gęstości Drewna. Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20120000536 (accessed on 25 January 2020). (In Polish)
- Trzciński, G.; Tymendorf, Ł. Transport Work for the Supply of Pine Sawlogs to the Sawmill. Forests 2020, 11, 1340. [Google Scholar] [CrossRef]
- Mydlarz, K.; Wieruszewski, M. Problems of Sustainable Transport of Large-Sized Roundwood. Sustainability 2020, 12, 2038. [Google Scholar] [CrossRef]
- Trzciński, G.; Tymendorf, Ł.; Kozakiewicz, P. Parameters of Trucks and Loads in the Transport of Scots Pine Wood Biomass Depending on the Season and Moisture Content of the Load. Forests 2021, 12, 223. [Google Scholar] [CrossRef]
- PN-93/D-02002. Round wood. In Classification, Terminology and Symbols; Polish Standardization Committee: Warsaw, Poland, 2002; p. 4. (In Polish) [Google Scholar]
- Bruchwald, A. Dendrometry; Warsaw University of Life Sciences: Warszawa, Poland, 1999; ISBN 83-00-02889-7. (In Polish) [Google Scholar]
- Ordinance No. 51 of the Director General of the State Forests on the Introduction of Technical Conditions for the Timber Trading in the State Forests National Forest Holding. Appendix No. 9. Technical Conditions-Middle-Size Wood 20199. Available online: http://drewno.zilp.lasy.gov.pl/drewno/Normy/9._drewno_sredniowymiarowe_-_ujednolicono_wg_zarz_54-2020.pdf (accessed on 1 July 2022). (In Polish)
- IFOVEA Pro; FOVEA SDP GmbH: Waiblingen, Germany, 2021.
- Timbeter; Timbeter Ltd.: Tallinn, Estonia, 2021.
- Gotych, V.; Hruzik, G.J.; Wieruszewski, M. The Analysis of Sawmill Logs Sorting Acuteness at Automatic Sorting Lines. Intercathedra 2013, 29, 15–19. [Google Scholar]
- Marshall, H.; Murphy, G.; Lachenbruch, B. Effects of Bark Thickness Estimates on Optimal Log Merchandising. For. Prod. J. 2006, 56, 87–92. [Google Scholar]
- Dudzińska, T. Wzory empiryczne do określenia procentu miąższości kory sosny. Sylwan 1997, 6, 17–20. [Google Scholar]
- Sulej, J.; Tomusiak, R. Influence of a Method of Reducing Bark Thickness and Rounding of Results on Accuracy of Determination of Logs’ Volume of Norway Spruce from Mountain Locations. Studia I Mater. CEPL w Rogowie 2018, 56, 138–148. Available online: https://cepl.sggw.edu.pl/wp-content/uploads/sites/75/2021/08/Sulej_Tomusiak.pdf (accessed on 1 July 2022). (In Polish).
- Krzysik, F. Nauka o Drewnie; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1975. (In Polish) [Google Scholar]
- Luomahaara, S. Trestima Energiapuun Mittauksessa (Trestima in Measuring Energywood); Seinäjoki University of Applied Sciences: Seinäjoki, Finland, 2017. [Google Scholar]
- Bruchwald, A.; Dmyterko, E.; Witkowska, J.; Jodłowski, K. Methods for determining the volume of silver birch (Betula pendula Roth) logs. Sylwan 2018, 162, 443–451. (In Polish) [Google Scholar] [CrossRef]
- Polkowski, K.; Zarzyński, P.; Tomusiak, R. Accuracy of methods to determine under bark volume of logs according to the PN−D−95000:2002 standard—A case study of Scots pine (Pinus sylvestris L.) from the Płaska Forest District. Sylwan 2019, 163, 460–468. (In Polish) [Google Scholar] [CrossRef]
- Berendt, F.; de Miguel-Diez, F.; Wallor, E.; Blasko, L.; Cremer, T. Comparison of different approaches to estimate bark volume of industrial wood at disc and log scale. Sci. Rep. 2021, 11, 15630. [Google Scholar] [CrossRef] [PubMed]
- Filho, A.F.; Machado, S.A.; Carneiro, A.R. Testing accuracy of log volume calculation procedures against water displacement techniques (xylometer). Can. J. For. Res. 2000, 30, 6. [Google Scholar] [CrossRef]
- .Akossou, A.Y.J.; Arzouma, S.; Attakpa, E.Y.; Fonton, N.H.; Kokou, K. Scaling of Teak (Tectona grandis) Logs by the Xylometer Technique: Accuracy of Volume Equations and Influence of the Log Length. Diversity 2013, 5, 99–113. [Google Scholar] [CrossRef]
- Özçelik, R.; Wiant, H.V., Jr.; Brooks, J.R. Accuracy using xylometry of log volume estimates for two tree species in Turkey. Sand J. For. Res. 2008, 23, 27–277. [Google Scholar] [CrossRef]
- Millers, M.; Magaznieks, J. Scots Pine (Pinus sylvestris L.) Stem Wood and Bark Moisture and Density Influencing Factors. Research for Rural Development. In Proceedings of the Annual 18th International Scientific Conference Proceedings, “Research for Rural Development”, Jelgava, Latvia, 16–18 May 2012; Volume 2, pp. 91–96. Available online: https://www2.llu.lv/research_conf/Proceedings/18th_volume2.pdf (accessed on 1 July 2022).
- Trzciński, G.; Sieniawski, W.; Moskalik, T. Effects of timber loads on gross vehicle weight. Folia For. Pol. Ser. A-For. 2013, 55, 159–167. [Google Scholar] [CrossRef]
- Trzciński, G.; Czerniak, A.; Grajewski, S. The functioning of forest communication infrastructure. Infrastruct. Ecol. Rural Areas 2016, 2, 527–542. (In Polish) [Google Scholar] [CrossRef]
Tree Species | Amount of Deliveries | Delivered Quantity m3 |
---|---|---|
Birch (Betula pendula) | 85 | 2619.73 |
Beech (Fagus sylvatica) | 33 | 780.42 |
Oak (Quercus) * | 4 | 93.50 |
Hornbeam (Carpinus betulus) | 25 | 584.45 |
Lime (Tilia) | 127 | 3747.24 |
Larch (Larix) | 72 | 1975.46 |
Alder (Alnus) | 144 | 4135.40 |
Aspen (Aspen) | 44 | 1229.57 |
Pine (Pinus) | 414 | 12,948.63 |
Spruce (Picea) | 119 | 4039.31 |
Total | 1067 | 32,153.71 |
Lp. | Tree Species | Wood Density kg·m−3 |
---|---|---|
1 | Birch (Betula pendula) | 810 |
2 | Beech (Fagus sylvatica) | 980 |
3 | Oak (Quercus) | 950 |
4 | Hornbeam (Carpinus betulus) | 960 |
5 | Lime (Tilia) | 670 |
6 | Larch (Larix) | 830 |
7 | Alder (Alnus) | 750 |
8 | Aspen (Aspen) | 710 |
9 | Pine (Pinus) | 740 |
10 | Spruce (Abies) | 720 |
Measure | Assortment | Mean | SD | Min | Max | Q1 | Median | Q3 |
---|---|---|---|---|---|---|---|---|
GVWactual (Mg) | Ls S2 | 50.68 46.42 | 2.74 3.94 | 31.35 33.58 | 66.90 58.50 | 48.95 43.74 | 50.60 46.36 | 52.25 49.04 |
Load volume (m3) | Ls S2 | 29.55 30.13 | 2.21 4.25 | 11.00 18.56 | 43.50 44.88 | 28.36 28.00 | 29.26 28.78 | 30.47 33.12 |
Weight of load (Mg) | Ls S2 | 30.55 26.87 | 2.67 3.45 | 8.10 16.60 | 45.92 38.10 | 28.90 24.48 | 30.30 26.72 | 32.00 29.08 |
Weight of empty set (tara) (Mg) | Ls S2 | 20.13 19.55 | 1.66 2.39 | 13.50 13.48 | 24.15 29.52 | 19.70 18.76 | 20.40 20.20 | 21.00 21.12 |
Weight of 1 m3 load (Mg·m−3) | Ls S2 | 1.03 0.90 | 0.06 0.11 | 0.74 0.50 | 1.31 1.34 | 1.00 0.83 | 1.05 0.90 | 1.07 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moskalik, T.; Tymendorf, Ł.; van der Saar, J.; Trzciński, G. Methods of Wood Volume Determining and Its Implications for Forest Transport. Sensors 2022, 22, 6028. https://doi.org/10.3390/s22166028
Moskalik T, Tymendorf Ł, van der Saar J, Trzciński G. Methods of Wood Volume Determining and Its Implications for Forest Transport. Sensors. 2022; 22(16):6028. https://doi.org/10.3390/s22166028
Chicago/Turabian StyleMoskalik, Tadeusz, Łukasz Tymendorf, Jan van der Saar, and Grzegorz Trzciński. 2022. "Methods of Wood Volume Determining and Its Implications for Forest Transport" Sensors 22, no. 16: 6028. https://doi.org/10.3390/s22166028
APA StyleMoskalik, T., Tymendorf, Ł., van der Saar, J., & Trzciński, G. (2022). Methods of Wood Volume Determining and Its Implications for Forest Transport. Sensors, 22(16), 6028. https://doi.org/10.3390/s22166028