Low-Light Image Enhancement Based on Constraint Low-Rank Approximation Retinex Model
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Illumination and Reflectance Constraints
3.2. Nuclear Norm Minimization for Low-Rank Approximation
3.3. Constraint Low-Rank Approximation Retinex Model
3.4. Illumination and Reflectance Estimation Problems
3.4.1. Illumination Estimation Problem
3.4.2. Reflectance Estimation Problem
3.5. Retinex Composition
4. Experimental Results and Analysis
4.1. Experiment Settings and Implementation Details
4.2. Decomposition Analysis
4.3. Subjective Visual Evaluation
4.4. Quantitative Evaluation
4.5. Denoising Evaluation
4.6. Ablation Study
4.7. Time-Consuming Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Land, E. The retinex theory of color vision. Sci. Am. 1977, 237, 108–128. [Google Scholar] [CrossRef]
- Chen, J.; Yang, X.; Lu, L.; Li, Q.; Li, Z.; Wu, W. A novel infrared image enhancement based on correlation measurement of visible image for urban traffic surveillance systems. J. Intell. Transp. Syst. 2020, 24, 290–303. [Google Scholar] [CrossRef]
- Kimmel, R.; Elad, M.; Shaked, D.; Keshet, R.; Sobel, I. A Variational Framework for Retinex. Int. J. Comput. Vis. 2004, 52, 7–23. [Google Scholar] [CrossRef]
- Bychkovsky, V.; Paris, S.; Chan, E.; Durand, F. Learning photographic global tonal adjustment with a database of input/output image pairs. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 97–104. [Google Scholar]
- Yan, J.; Lin, S.; Kang, S.B.; Tang, X. A Learning-to-Rank Approach for Image Color Enhancement. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2987–2994. [Google Scholar]
- Chen, C.; Chen, Q.; Xu, J.; Koltun, V. Learning to See in the Dark. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3291–3300. [Google Scholar]
- Zhang, Y.; Zhang, J.; Guo, X. Kindling the darkness: A practical low-light image enhancer. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 1632–1640. [Google Scholar]
- Lin, H.; Shi, Z. Multi-scale retinex improvement for nighttime image enhancement. Optik 2014, 125, 7143–7148. [Google Scholar] [CrossRef]
- Pizer, S.M.; Amburn, E.P.; Austin, J.D.; Cromartie, R.; Geselowitz, A.; Greer, T.; ter Haar Romeny, B.; Zimmerman, J.B.; Zuiderveld, K. Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 1987, 39, 355–368. [Google Scholar] [CrossRef]
- Wang, Q.; Ward, R.K. Fast image/video contrast enhancement based on weighted thresholded histogram equalization. IEEE Trans. Consum. Electron. 2007, 53, 757–764. [Google Scholar] [CrossRef]
- Lee, C.; Lee, C.; Kim, C.S. Contrast enhancement based on layered difference representation of 2D histograms. IEEE Trans. Image Process. 2013, 22, 5372–5384. [Google Scholar] [CrossRef]
- Lore, K.G.; Akintayo, A.; Sarkar, S. LLNet: A deep autoencoder approach to natural low-light image enhancement. Pattern Recognit. 2017, 61, 650–662. [Google Scholar] [CrossRef]
- Lv, F.; Lu, F.; Wu, J.; Lim, C.S. MBLLEN: Low-Light Image/Video Enhancement Using CNNs. In Proceedings of the British Machine Vision Conference 2018, Newcastle, UK, 3–6 September 2018. [Google Scholar]
- Wei, C.; Wang, W.; Yang, W.; Liu, J. Deep retinex decomposition for low-light enhancement. arXiv 2018, arXiv:1808.04560. [Google Scholar]
- Jiang, Y.; Gong, X.; Liu, D.; Cheng, Y.; Fang, C.; Shen, X.; Yang, J.; Zhou, P.; Wang, Z. Enlightengan: Deep light enhancement without paired supervision. IEEE Trans. Image Process. 2021, 30, 2340–2349. [Google Scholar] [CrossRef]
- Xiong, W.; Liu, D.; Shen, X.; Fang, C.; Luo, J. Unsupervised real-world low-light image enhancement with decoupled networks. arXiv 2020, arXiv:2005.02818. [Google Scholar]
- Brainard, D.; Wandell, B. Analysis of the retinex theory of color vision. J. Opt. Soc. Am. A Opt. Image Sci. 1986, 3, 1651–1661. [Google Scholar] [CrossRef] [PubMed]
- Jobson, D.; Rahman, Z.; Woodell, G. Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 1997, 6, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Jobson, D.J.; Rahman, Z.; Woodell, G.A. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 1997, 6, 965–976. [Google Scholar] [CrossRef]
- Gu, Z.; Li, F.; Fang, F.; Zhang, G. A Novel Retinex-Based Fractional-Order Variational Model for Images With Severely Low Light. IEEE Trans. Image Process. 2020, 29, 3239–3253. [Google Scholar] [CrossRef]
- Li, M.; Liu, J.; Yang, W.; Sun, X.; Guo, Z. Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model. IEEE Trans. Image Process. 2018, 27, 2828–2841. [Google Scholar] [CrossRef]
- Hao, S.; Han, X.; Guo, Y.; Xu, X.; Wang, M. Low-Light Image Enhancement with Semi-Decoupled Decomposition. IEEE Trans. Multimed. 2020, 22, 3025–3038. [Google Scholar] [CrossRef]
- Provenzi, E.; Carli, L.D.; Rizzi, A.; Marini, D. Mathematical definition and analysis of the retinex algorithm. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2005, 22, 2613–2621. [Google Scholar] [CrossRef]
- Fu, X.; Liao, Y.; Zeng, D.; Huang, Y.; Zhang, X.; Ding, X. A Probabilistic Method for Image Enhancement With Simultaneous Illumination and Reflectance Estimation. IEEE Trans. Image Process. 2015, 24, 4965–4977. [Google Scholar] [CrossRef]
- Zhang, Q.; Nie, Y.; Zhu, L.; Xiao, C.; Zheng, W.S. Enhancing Underexposed Photos Using Perceptually Bidirectional Similarity. IEEE Trans. Multimed. 2021, 23, 189–202. [Google Scholar] [CrossRef]
- Xu, L.; Yan, Q.; Xia, Y.; Jia, J. Structure extraction from texture via relative total variation. ACM Trans. Graph. (TOG) 2012, 31, 1–10. [Google Scholar] [CrossRef]
- Candès, E.J.; Recht, B. Exact matrix completion via convex optimization. Found. Comput. Math. 2009, 9, 717–772. [Google Scholar] [CrossRef]
- Guo, X.; Li, Y.; Ling, H. LIME: Low-Light Image Enhancement via Illumination Map Estimation. IEEE Trans. Image Process. 2017, 26, 982–993. [Google Scholar] [CrossRef]
- Pang, J.; Zhang, S.; Bai, W. A novel framework for enhancement of the low lighting video. In Proceedings of the 2017 IEEE Symposium on Computers and Communications (ISCC), Heraklion, Greece, 3–6 July 2017; pp. 1366–1371. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, H.M.; Li, B.; Guo, Q. Naturalness Preserved Nonuniform Illumination Estimation for Image Enhancement Based on Retinex. IEEE Trans. Multimed. 2018, 20, 335–344. [Google Scholar] [CrossRef]
- Ma, K.; Duanmu, Z.; Yeganeh, H.; Wang, Z. Multi-Exposure Image Fusion by Optimizing A Structural Similarity Index. IEEE Trans. Comput. Imaging 2018, 4, 60–72. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, J.; Hu, H.M.; Li, B. Naturalness Preserved Enhancement Algorithm for Non-Uniform Illumination Images. IEEE Trans. Image Process. 2013, 22, 3538–3548. [Google Scholar] [CrossRef]
- González, R.; Woods, R. Digital Image Processing. IEEE Trans. Pattern Anal. Mach. Intell. 1981, PAMI-3, 242–243. [Google Scholar]
- Rahman, Z.; Jobson, D.J.; Woodell, G.A. Retinex processing for automatic image enhancement. J. Electron. Imaging 2004, 13, 100–110. [Google Scholar]
- Çelik, T.; Tjahjadi, T. Contextual and Variational Contrast Enhancement. IEEE Trans. Image Process. 2011, 20, 3431–3441. [Google Scholar] [CrossRef]
- Dong, X.; Pang, Y.; Wen, J. Fast efficient algorithm for enhancement of low lighting video. In Proceedings of the 2011 IEEE International Conference on Multimedia and Expo, Barcelona, Spain, 11–15 July 2011; pp. 1–6. [Google Scholar]
- Cai, B.; Xu, X.; Guo, K.; Jia, K.; Hu, B.; Tao, D. A Joint Intrinsic-Extrinsic Prior Model for Retinex. In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4020–4029. [Google Scholar]
- Guo, C.; Li, C.; Guo, J.; Loy, C.C.; Hou, J.; Kwong, S.; Cong, R. Zero-reference deep curve estimation for low-light image enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1780–1789. [Google Scholar]
- Li, C.; Guo, C.; Chen, C.L. Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 4225–4238. [Google Scholar] [CrossRef]
- Ren, X.; Yang, W.; Cheng, W.H.; Liu, J. LR3M: Robust Low-Light Enhancement via Low-Rank Regularized Retinex Model. IEEE Trans. Image Process. 2020, 29, 5862–5876. [Google Scholar] [CrossRef] [PubMed]
- Zhai, G.; Sun, W.; Min, X.; Zhou, J. Perceptual quality assessment of low-light image enhancement. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2021, 17, 1–24. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Z. Quality Assessment of Image Super-Resolution: Balancing Deterministic and Statistical Fidelity. arXiv 2022, arXiv:2207.08689. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Bhandari, A.K. Principal component analysis-based low-light image enhancement using reflection model. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
Component Ablation | PSNR ↑ | SSIM ↑ |
---|---|---|
CLAR without | 12.5327 | 0.3086 |
CLAR without | 18.8950 | 0.5091 |
CLAR without | 19.1743 | 0.5881 |
CLAR | 19.6521 | 0.6078 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Shang, J.; Song, W.; Chen, J.; Zhang, G.; Pan, J. Low-Light Image Enhancement Based on Constraint Low-Rank Approximation Retinex Model. Sensors 2022, 22, 6126. https://doi.org/10.3390/s22166126
Li X, Shang J, Song W, Chen J, Zhang G, Pan J. Low-Light Image Enhancement Based on Constraint Low-Rank Approximation Retinex Model. Sensors. 2022; 22(16):6126. https://doi.org/10.3390/s22166126
Chicago/Turabian StyleLi, Xuesong, Jianrun Shang, Wenhao Song, Jinyong Chen, Guisheng Zhang, and Jinfeng Pan. 2022. "Low-Light Image Enhancement Based on Constraint Low-Rank Approximation Retinex Model" Sensors 22, no. 16: 6126. https://doi.org/10.3390/s22166126
APA StyleLi, X., Shang, J., Song, W., Chen, J., Zhang, G., & Pan, J. (2022). Low-Light Image Enhancement Based on Constraint Low-Rank Approximation Retinex Model. Sensors, 22(16), 6126. https://doi.org/10.3390/s22166126