MRI-Compatible Microcirculation System Using Ultrasonic Pumps for Microvascular Imaging on 3T MRI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flow System Configuration
2.2. MRA Experimental Protocols
2.3. Flow Analysis in the Microvascular Phantom
2.4. Comparison of Images by Tube Size and Length and MR Sequences
2.5. Reproducibility of Images Obtained in the Flow System
2.6. Comparison of the Actual Velocity Measured by the Flowmeter with the Velocity Measured in the PC MRA Image
3. Results
3.1. Comparison of Images by Tube Size and Length
3.2. Reproducibility of the Blood Flow Supply from the Piezoelectric Pump
3.3. Evaluation of the Optimal Imaging Parameters and Tube Size in the Developed System
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buch, S.; Wang, Y.; Park, M.-G.; Jella, P.K.; Hu, J.; Chen, Y.; Shah, K.; Ge, Y.; Haacke, E.M. Subvoxel Vascular Imaging of the Midbrain Using USPIO-Enhanced MRI. NeuroImage 2020, 220, 117106. [Google Scholar] [CrossRef] [PubMed]
- Wardlaw, J.M.; Smith, C.; Dichgans, M. Small Vessel Disease: Mechanisms and Clinical Implications. Lancet Neurol. 2019, 18, 684–696. [Google Scholar] [CrossRef]
- Djulejić, V.; Marinković, S.; Maliković, A.; Jovanović, I.; Djordjević, D.; Ćetković, M.; Todorović, V.; Milisavljević, M. Morphometric Analysis, Region of Supply and Microanatomy of the Lenticulostriate Arteries and Their Clinical Significance. J. Clin. Neurosci. 2012, 19, 1416–1421. [Google Scholar] [CrossRef]
- Rudilosso, S.; Rodríguez-Vázquez, A.; Urra, X.; Arboix, A. The Potential Impact of Neuroimaging and Translational Research on the Clinical Management of Lacunar Stroke. Int. J. Mol. Sci. 2022, 23, 1497. [Google Scholar] [CrossRef] [PubMed]
- Wardlaw, J.M.; Smith, E.E.; Biessels, G.J.; Cordonnier, C.; Fazekas, F.; Frayne, R.; Lindley, R.I.; O’Brien, J.T.; Barkhof, F.; Benavente, O.R.; et al. Neuroimaging Standards for Research into Small Vessel Disease and Its Contribution to Ageing and Neurodegeneration. Lancet Neurol. 2013, 12, 822–838. [Google Scholar] [CrossRef]
- Walsh, E.G.; Holton, A.D.; Brott, B.C.; Venugopalan, R.; Anayiotos, A.S. Magnetic Resonance Phase Velocity Mapping through NiTi Stents in a Flow Phantom Model. J. Magn. Reson. Imaging 2005, 21, 59–65. [Google Scholar] [CrossRef]
- Schneider, M.J.; Gaass, T.; Ricke, J.; Dinkel, J.; Dietrich, O. Assessment of Intravoxel Incoherent Motion MRI with an Artificial Capillary Network: Analysis of Biexponential and Phase-Distribution Models. Magn. Reson. Med. 2019, 82, 1373–1384. [Google Scholar] [CrossRef]
- Yu, N.; Hollnagel, C.; Blickenstorfer, A.; Kollias, S.S.; Riener, R. Comparison of MRI-Compatible Mechatronic Systems With Hydrodynamic and Pneumatic Actuation. IEEE/ASME Trans. Mechatron. 2008, 13, 268–277. [Google Scholar] [CrossRef]
- Evans, A.J.; Hedlund, L.W.; Herfkens, R.J. A Cardiac Phantom and Pulsatile Flow Pump for Magnetic Resonance Imaging Studies. Investig. Radiol. 1988, 23, 579–583. [Google Scholar] [CrossRef]
- Kim, J.-H.; Jung, J.-Y.; Lee, Y.-B.; Kang, C.-K. Investigation of Flow Changes in Intracranial Vascular Disease Models Constructed with MRA Images. Sensors 2022, 22, 2302. [Google Scholar] [CrossRef]
- van Ooij, P.; Guédon, A.; Poelma, C.; Schneiders, J.; Rutten, M.C.M.; Marquering, H.A.; Majoie, C.B.; van Bavel, E.; Nederveen, A.J. Complex Flow Patterns in a Real-Size Intracranial Aneurysm Phantom: Phase Contrast MRI Compared with Particle Image Velocimetry and Computational Fluid Dynamics. NMR Biomed. 2012, 25, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Brindise, M.C.; Rothenberger, S.; Dickerhoff, B.; Schnell, S.; Markl, M.; Saloner, D.; Rayz, V.L.; Vlachos, P.P. Multi-Modality Cerebral Aneurysm Haemodynamic Analysis: In Vivo 4D Flow MRI, in Vitro Volumetric Particle Velocimetry and in Silico Computational Fluid Dynamics. J. R. Soc. Interface 2019, 16, 465. [Google Scholar] [CrossRef] [PubMed]
- Azuma, T.; Kodama, T.; Yano, T.; Suzuki, M.; Kimura, T.; Tamaribuchi, Y. Improved Visualization of Intracranial Vessels by Gradient Moment Nulling in Hybrid of Opposite-Contrast Magnetic Resonance Angiography (HOP MRA). Magn. Reson. Med. Sci. 2010, 9, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jiang, Q.; Shen, Y.; Zhang, L.; Haacke, E.M.; Ge, Y.; Qi, S.; Hu, J. The Capability of Detecting Small Vessels beyond the Conventional MRI Sensitivity Using Iron-Based Contrast Agent Enhanced Susceptibility Weighted Imaging. NMR Biomed. 2020, 33, e4256. [Google Scholar] [CrossRef] [PubMed]
- Cho, Z.-H.; Kang, C.-K.; Han, J.-Y.; Kim, S.-H.; Kim, K.-N.; Hong, S.-M.; Park, C.-W.; Kim, Y.-B. Observation of the Lenticulostriate Arteries in the Human Brain In Vivo Using 7.0T MR Angiography. Stroke 2008, 39, 1604–1606. [Google Scholar] [CrossRef]
- Kong, Q.; Zhang, Z.; Yang, Q.; Fan, Z.; Wang, B.; An, J.; Zhuo, Y. 7T TOF-MRA Shows Modulated Orifices of Lenticulostriate Arteries Associated with Atherosclerotic Plaques in Patients with Lacunar Infarcts. Eur. J. Radiol. 2019, 118, 271–276. [Google Scholar] [CrossRef]
- Tsekos, N.V.; Khanicheh, A.; Christoforou, E.; Mavroidis, C. Magnetic Resonance–Compatible Robotic and Mechatronics Systems for Image-Guided Interventions and Rehabilitation: A Review Study. Annu. Rev. Biomed. Eng. 2007, 9, 351–387. [Google Scholar] [CrossRef]
- Moser, R.; Gassert, R.; Burdet, E.; Sache, L.; Woodtli, H.R.; Erni, J.; Maeder, W.; Bleuler, H. An MR Compatible Robot Technology. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), Taipei, Taiwan, 14–19 September 2003; Volume 1, pp. 670–675. [Google Scholar]
- Harrington, G.S.; Wright, C.T.; Downs, J.H. A New Vibrotactile Stimulator for Functional MRI. Hum. Brain Mapp. 2000, 10, 140–145. [Google Scholar] [CrossRef]
- Rott, N. Note on the History of the Reynolds Number. Annu. Rev. Fluid Mech. 1990, 22, 1–12. [Google Scholar] [CrossRef]
- Teoh, W.L.; Khoo, M.B.C.; Castagliola, P.; Yeong, W.C.; Teh, S.Y. Run-Sum Control Charts for Monitoring the Coefficient of Variation. Eur. J. Oper. Res. 2017, 257, 144–158. [Google Scholar] [CrossRef]
- Tian, L. Inferences on the Common Coefficient of Variation. Stat. Med. 2005, 24, 2213–2220. [Google Scholar] [CrossRef] [PubMed]
- Albert, A.; Zhang, L. A Novel Definition of the Multivariate Coefficient of Variation. Biom. J. 2010, 52, 667–675. [Google Scholar] [CrossRef]
- Yu, S.; Yan, L.; Yao, Y.; Wang, S.; Yang, M.; Wang, B.; Zhuo, Y.; Ai, L.; Miao, X.; Zhao, J.; et al. Noncontrast Dynamic MRA in Intracranial Arteriovenous Malformation (AVM): Comparison with Time of Flight (TOF) and Digital Subtraction Angiography (DSA). Magn. Reson. Imaging 2012, 30, 869–877. [Google Scholar] [CrossRef]
- Saloner, D. The AAPM/RSNA Physics Tutorial for Residents. An Introduction to MR Angiography. RadioGraphics 1995, 15, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Pipe, J.G. Limits of Time-of-Flight Magnetic Resonance Angiography. Top. Magn. Reson. Imaging 2001, 12, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Schnerr, R.S.; Jansen, J.F.A.; Uludag, K.; Hofman, P.A.M.; Wildberger, J.E.; van Oostenbrugge, R.J.; Backes, W.H. Pulsatility of Lenticulostriate Arteries Assessed by 7 Tesla Flow MRI-Measurement, Reproducibility, and Applicability to Aging Effect. Front. Physiol. 2017, 8, 961. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.-K.; Park, C.-A.; Lee, D.S.; Lee, Y.-B.; Park, C.-W.; Kim, Y.-B.; Cho, Z.-H. Velocity Measurement of Microvessels Using Phase-Contrast Magnetic Resonance Angiography at 7 Tesla MRI. Magn. Reson. Med. 2016, 75, 1640–1646. [Google Scholar] [CrossRef]
- Caparelli, E.C.; Zhai, T.; Yang, Y. Simultaneous Transcranial Magnetic Stimulation and Functional Magnetic Resonance Imaging: Aspects of Technical Implementation. Front. Neurosci. 2020, 14, 554714. [Google Scholar] [CrossRef]
- Hollnagel, D.I.; Summers, P.E.; Kollias, S.S.; Poulikakos, D. Comparing Steady and Pulsatile LDV and PC-MRA Flow Measurements in an Anatomically Accurate Cerebral Artery Aneurysm Model. In Proceedings of the Society of Magnetic Resonance in Medicine (ISMRM), Washington, DC, USA, 6–12 May 2006; Volume 2006, p. 1919. [Google Scholar]
- Guo, G.; Wu, R.H.; Mikulis, D.J. Construction of Optimal Velocity Encoding for Cerebral Blood Flow Volume Measurement with Phase-Contrast MRA. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 24 January 2005; pp. 1404–1407. [Google Scholar]
- Choi, J.W.; Roh, H.G.; Moon, W.-J.; Chun, Y.I.; Kang, C.H. Optimization of MR Parameters of 3D TOF-MRA for Various Intracranial Stents at 3.0T MRI. Neurointervention 2011, 6, 71–77. [Google Scholar] [CrossRef]
Targets | Diameter | MRI | Pump (Metallic) | Velocity or Flow Rate | |
---|---|---|---|---|---|
Walsh (2005) [6] | Coronary artery | 9 mm | 1.5T | Pulsatile flow (Yes) | 3.7 mL/s |
Kim (2022) [10] | Circle of Willis | 4.9 mm | 3T | Peristaltic (Yes) | N-M |
Ooij (2012) [11] | Anterior communicating artery | 2.1 mm | 3T | Centrifugal (Yes) | 10.46 cm/s |
Brindise (2019) [12] | Basilar artery | 5 mm | 3T | Gear (Yes) | 3.09 mL/s |
Azuma (2010) [13] | Internal carotid artery | 5 mm | 1.5T | N-M | 20 cm/s |
Wang (2020) [14] | Small artery | 0.3 mm | 7T | No pump (No) | N-M |
Parameter | TOF | PC | |||
---|---|---|---|---|---|
2D Low | 2D High | 3D High | |||
TR (ms) | 20.0 | 20.0 | 30.0 | 28.6 | |
TE (ms) | 5.33 | 8.60 | 5.29 | 7.52 | |
FA (deg) | 30 | 30 | 25 | 70 | |
Number of slices | 60 | 30 | 44 | 10 | |
Image plane | axial | axial | axial | coronal | axial |
Matrix size | 320 × 160 | 704 × 352 | 704 × 352 | 448 × 448 | 512 × 384 |
FOV (mm2) | 176 × 88 | 176 × 88 | 176 × 88 | 175 × 175 | 174 × 130.56 |
TA (min:s) | 1:28 | 1:27 | 2:26 | 3:01 | 1:00 |
BW (Hz/Px) | 200 | 203 | 154 | 155 | 199 |
GRAPPA | Reduction factor = 2 with 24 autocalibration signal lines | ||||
VENC (cm/s) Encoding direction | N/A | 10/20/30 Through plane |
Tube Diameter (mm) | Maximum Signal Intensity | |
---|---|---|
1 m | 6 m | |
1.0 | 241 | 190 |
0.8 | 199 | 182 |
0.5 | 133 | 100 |
0.4 | 91 | 93 |
Tube Diameter (mm) | SNR | ||
---|---|---|---|
3D TOF High | 2D TOF High | 2D TOF Low | |
1.0 | 0.46 | 1.03 | 3.93 |
0.8 | 0.29 | 0.67 | 3.03 |
0.5 | 0.10 | 0.24 | 1.35 |
0.4 | 0.09 | 0.16 | 0.76 |
Tube ID (mm) | Signal Intensity | |||||||
---|---|---|---|---|---|---|---|---|
#1 | #2 | #3 | #4 | #5 | #6 | #7 | Average ± SD | |
0.8 | 638 | 590 | 586 | 611 | 599 | 679 | 630 | 619.3 ± 32.7 |
1.0 | 636 | 588 | 648 | 658 | 604 | 605 | 627 | 624.0 ± 25.7 |
Tube Diameter (mm) | VENC 10 | VENC 20 | VENC 30 |
---|---|---|---|
Velocity of PC MRA (Flowmeter) (cm/s) | |||
0.4 | 1.13 (5.70) | 2.47 (5.70) | 2.56 (5.70) * |
0.5 | 1.67 (5.69) | 3.20 (5.43) | 4.46 (5.52) * |
0.8 | 3.72 (11.70) | 8.50 (11.14) | 10.03 (11.01) * |
1.0 | 4.05 (8.55) | 9.96 (8.32) | 8.21 (9.04) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.-Y.; Seo, D.-K.; Lee, Y.-B.; Kang, C.-K. MRI-Compatible Microcirculation System Using Ultrasonic Pumps for Microvascular Imaging on 3T MRI. Sensors 2022, 22, 6191. https://doi.org/10.3390/s22166191
Jung J-Y, Seo D-K, Lee Y-B, Kang C-K. MRI-Compatible Microcirculation System Using Ultrasonic Pumps for Microvascular Imaging on 3T MRI. Sensors. 2022; 22(16):6191. https://doi.org/10.3390/s22166191
Chicago/Turabian StyleJung, Ju-Yeon, Dong-Kyu Seo, Yeong-Bae Lee, and Chang-Ki Kang. 2022. "MRI-Compatible Microcirculation System Using Ultrasonic Pumps for Microvascular Imaging on 3T MRI" Sensors 22, no. 16: 6191. https://doi.org/10.3390/s22166191
APA StyleJung, J. -Y., Seo, D. -K., Lee, Y. -B., & Kang, C. -K. (2022). MRI-Compatible Microcirculation System Using Ultrasonic Pumps for Microvascular Imaging on 3T MRI. Sensors, 22(16), 6191. https://doi.org/10.3390/s22166191