Interactive Application of Data Glove Based on Emotion Recognition and Judgment System
Abstract
:1. Introduction
2. Classification of Emotion Trends
3. System of Emotion Recognition and Judgment
3.1. Data Analysis of Physiological Signal (PS)
3.2. Extraction of Optimal Feature of PS
3.3. Establishment of the System of Emotion Judgment
4. Design and Connection of Data Glove
5. Test of Virtual Gesture Change Driven by Emotion
5.1. System Design
5.2. Virtual Hand Control Driven by Emotion
5.3. Manipulator Control Driven by Emotion
- (1)
- Acceleration:
- (2)
- Angular velocity:
- (3)
- Angle:
- (1)
- port_noanglesure function is used to reverse judgment. The data packet is not the angle packet of the hand.
- (2)
- angle_resume function is used to verify whether the data received by the angle package is correct, and to obtain 11-bit data of angle packet (angle_data0, angle_data1, angle_data2, …, angle_data9, angle_data10).
- (3)
- angledata_calculodegree function is used to convert the received angle data into two-bit angle data in degrees.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kundu, A.S.; Mazumder, O.; Lenka, P.K.; Bhaumik, S. Hand gesture recognition based omnidirectional wheelchair control using IMU and EMG sensors. J. Intell. Robot. Syst. 2018, 91, 529–541. [Google Scholar] [CrossRef]
- Zhang, X.L.; Yang, Z.Q.; Chen, T.Y.; Chen, D.L.; Huang, M.C. Cooperative sensing and wearable computing for sequential hand gesture recognition. IEEE Sens. J. 2019, 9, 5775–5783. [Google Scholar] [CrossRef]
- Song, X.Y.; van de Ven, S.S.; Chen, S.G.; Kang, P.Q.; Gao, Q.H.; Jia, J.; Shull, P.B. Proposal of a wearable multimodal sensing-based serious games approach for hand movement training after stroke. Front. Physiol. 2022, 13, 811950. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Lv, B.; Guo, W.C.; Zhang, C.; Wang, H.T.; Sheng, X.J.; Shull, P.B. Feasibility of wrist-worn, real-time hand, and surface gesture recognition via sEMG and IMU sensing. IEEE Trans. Ind. Inform. 2018, 14, 3376–3385. [Google Scholar] [CrossRef]
- Yang, K.; Xu, M.J.; Yang, X.T.; Yang, R.H.; Chen, Y.M. A novel EMG-based hand gesture recognition framework based on multivariate variational mode decomposition. Sensors 2021, 21, 7002. [Google Scholar] [CrossRef]
- Alfaro, J.G.C.; Trejos, A.L. User-independent hand gesture recognition classification models using sensor fusion. Sensors 2022, 4, 1321. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Sun, L.; Jafari, R. A wearable system for recognizing american sign language in real-time using IMU and surface EMG sensors. IEEE J. Biomed. Health Inform. 2016, 20, 2598302. [Google Scholar] [CrossRef]
- Shin, S.; Tafreshi, R.; Langari, R. EMG and IMU based real-time HCI using dynamic hand gestures for a multiple-DoF robot arm. J. Intell. Fuzzy Syst. 2018, 35, 861–876. [Google Scholar] [CrossRef]
- Shahzad, W.; Ayaz, Y.; Khan, M.J.; Naseer, N.; Khan, M. Enhanced performance for multi-forearm movement decoding using hybrid IMU sEMG interface. Front. Neurorobot. 2019, 13, 43. [Google Scholar] [CrossRef] [Green Version]
- Ordóñez Flores, J.A.; Álvarez, R.; Benalcázar, M.; Barona, L.; Leonardo, Á.; Cruz, P.; Vásconez, J.P. A new methodology for pattern recognition applied to hand gestures recognition using emg. Analysis of intrapersonal and interpersonal variability. In Proceedings of the 2021 IEEE Fifth Ecuador Technical Chapters Meeting (ETCM), Cuenca, Ecuador, 12–15 October 2021. [Google Scholar] [CrossRef]
- Romero, R.; Cruz, P.; Vasconez, J.P.; Benalcazar, M.; Alvarez, R.; Barona, L.; Valdivieso, A.L. Hand gesture and arm movement recognition for multimodal control of a 3-DOF helicopter. Lect. Notes Netw. Syst. 2022, 429, 363–377. [Google Scholar]
- Chico, A.; Cruz, P.; Vásconez, J.P.; Benalcázar, M.; Álvarez, R.; Barona, L.; Valdivieso, A.L. Hand gesture recognition and tracking control for a virtual UR5 robot manipulator. In Proceedings of the 2021 IEEE Fifth Ecuador Technical Chapters Meeting (ETCM), Cuenca, Ecuador, 12–15 October 2021. [Google Scholar] [CrossRef]
- Tarchanidis, K.N.; Lygouras, J.N. Data glove with a force sensor. IEEE Trans. Instrum. Meas. 2003, 52, 984–989. [Google Scholar] [CrossRef]
- Kamel, N.S.; Sayeed, S. SVD-based signature verification technique using data glove. Int. J. Pattern Recognit. Artif. Intell. 2008, 22, 431–443. [Google Scholar] [CrossRef]
- Yoon, J.W.; Yang, S.I.; Cho, S.B. Adaptive mixture-of-experts models for data glove interface with multiple users. Expert Syst. Appl. 2012, 39, 4898–4907. [Google Scholar] [CrossRef]
- Kim, K.W.; Lee, M.S.; Soon, B.R.; Ryu, M.H.; Kim, J.N. Recognition of sign language with an inertial sensor-based data glove. Technol. Health Care 2016, 24, S223–S230. [Google Scholar] [CrossRef]
- Chen, S.; Lou, Z.; Chen, D.; Jiang, K.; Shen, G.Z. Polymer-Enhanced Highly Stretchable Conductive Fiber strain sensor used for electronic data gloves. Adv. Mater. Technol. 2016, 1, 1600136. [Google Scholar] [CrossRef]
- Fang, B.; Sun, F.C.; Liu, H.P.; Liu, C.F. 3D human gesture capturing and recognition by the IMMU-based data glove. Neurocomputing 2018, 277, 198–207. [Google Scholar] [CrossRef]
- Lin, B.S.; Lee, I.J.; Yang, S.Y.; Lo, Y.C.; Lee, J.; Chen, J.L. Design of an inertial-sensor-based data glove for hand function evaluation. Sensors 2018, 18, 1545. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.M.; Wang, Y.K.; Pang, J.W.; Wang, Z.Y.; Zi, B. Development and control of an MR brake-based passive force feedback data glove. IEEE Access 2019, 7, 172477–172488. [Google Scholar] [CrossRef]
- Li, Y.T.; Di, H.T.; Xin, Y.; Jiang, X.S. Optical fiber data glove for hand posture capture. OPTIK 2021, 233, 166603. [Google Scholar] [CrossRef]
- Wu, C.C.; Wang, K.E.; Cao, Q.Q.; Fei, F.; Yang, D.H.; Lu, X.; Xu, B.G.; Zeng, H.; Song, A.G. Development of a low-cost wearable data glove for capturing finger joint angles. Micromachines 2021, 12, 771. [Google Scholar] [CrossRef]
- Sarwat, H.; Sarwat, H.; Maged, S.A.; Emara, T.H.; Elbokl, A.M.; Awad, M.I. Design of a data glove for assessment of hand performance using supervised machine learning. Sensors 2021, 21, 6948. [Google Scholar] [CrossRef] [PubMed]
- Takigawa, S.; Mimura, H. Development of contralaterally controlled functional electrical stimulation to realize multiple grasping postures with data glove. Sens. Mater. 2021, 33, 3645–3656. [Google Scholar] [CrossRef]
- Ueda, Y. Understanding mood of the crowd with facial expressions: Majority judgment for evaluation of statistical summary perception. Atten. Percept. Psychophys. 2022, 84, 843–860. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.X. Interactive Visual Analysis of Human Emotions from Text. In The Workshop on Emovis; ACM: New York, NY, USA, 2016; p. 3. [Google Scholar]
Subjects | 1 | 2 | 3 | 4 |
---|---|---|---|---|
1 | −8.44% | +13.42% | −7.12% | −5.03% |
2 | −14.62% | X | +3.94% | −21.01% |
3 | −16.38% | −18.93% | +11.27% | −15.50% |
4 | −15.11% | X | −9.21% | +10.48% |
5 | −15.57% | −17.81% | −7.44% | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.; Li, C.; Zhang, Y. Interactive Application of Data Glove Based on Emotion Recognition and Judgment System. Sensors 2022, 22, 6327. https://doi.org/10.3390/s22176327
Lin W, Li C, Zhang Y. Interactive Application of Data Glove Based on Emotion Recognition and Judgment System. Sensors. 2022; 22(17):6327. https://doi.org/10.3390/s22176327
Chicago/Turabian StyleLin, Wenqian, Chao Li, and Yunjian Zhang. 2022. "Interactive Application of Data Glove Based on Emotion Recognition and Judgment System" Sensors 22, no. 17: 6327. https://doi.org/10.3390/s22176327
APA StyleLin, W., Li, C., & Zhang, Y. (2022). Interactive Application of Data Glove Based on Emotion Recognition and Judgment System. Sensors, 22(17), 6327. https://doi.org/10.3390/s22176327