Adaptive Lower Limb Pattern Recognition for Multi-Day Control
Abstract
:1. Introduction
2. Material & Methods
2.1. Experimental Data
2.2. Feature Extraction and Classification
2.3. Adaptation Strategies
- combination of backward prediction and updating using entropy.
2.3.1. Entropy-Based Sample Selection
2.3.2. Backward Predictor
2.3.3. Backward Predictor with Entropy Adaptation
2.4. Evaluation
3. Results
3.1. Forward Prediction
3.2. Forward Prediction per Activity
3.3. Backward Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Milosevic, B.; Farella, E.; Benaui, S. Exploring Arm Posture and Temporal Variability in Myoelectric Hand Gesture Recognition. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, Enschede, The Netherlands, 26–29 August 2018; pp. 1032–1037. [Google Scholar] [CrossRef]
- Palermo, F.; Cognolato, M.; Gijsberts, A.; Müller, H.; Caputo, B.; Atzori, M. Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, London, UK, 17–20 July 2017; pp. 1154–1159. [Google Scholar] [CrossRef]
- Kyranou, I.; Vijayakumar, S.; Erden, M.S. Causes of performance degradation in non-invasive electromyographic pattern recognition in upper limb prostheses. Front. Neurorobotics 2018, 12, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufmann, P.; Englehart, K.; Platzner, M. Fluctuating EMG signals: Investigating long-term effects of pattern matching algorithms. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010), Buenos Aires, Argentina, 31 August–4 September 2010; pp. 6357–6360. [Google Scholar] [CrossRef]
- Phinyomark, A.; Campbell, E.; Scheme, E. Biomedical Signal Processing; Surface electromyography (EMG) signal processing, classification, and practical considerations; Springer: Singapore, 2020; pp. 3–29. [Google Scholar]
- Farina, D.; Vujaklija, I.; Brånemark, R.; Bull, A.M.; Dietl, H.; Graimann, B.; Hargrove, L.J.; Hoffmann, K.P.; Huang, H.H.; Ingvarsson, T.; et al. Toward higher-performance bionic limbs for wider clinical use. Nat. Biomed. Eng. 2021, 1–13. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhang, D.; Sheng, X.; Zhu, X. Effects of Long-Term Myoelectric Signals on Pattern Recognition. In Proceedings of the Intelligent Robotics and Applications, Busan, Korea, 25–28 September 2013; pp. 396–404. [Google Scholar] [CrossRef]
- He, J.; Zhang, D.; Jiang, N.; Sheng, X.; Farina, D.; Zhu, X. User adaptation in long-term, open-loop myoelectric training: Implications for EMG pattern recognition in prosthesis control. J. Neural Eng. 2015, 12, 046005. [Google Scholar] [CrossRef] [PubMed]
- Burrello, A.; Zanghieri, M.; Sarti, C.; Ravaglia, L.; Benatt, S.; Benini, L. Tackling Time-Variability in sEMG-based Gesture Recognition with On-Device Incremental Learning and Temporal Convolutional Networks. In Proceedings of the 2021 IEEE Sensors Applications Symposium (SAS), Sundsvall, Sweden, 2–4 August 2021; pp. 1–6. [Google Scholar]
- Ding, Q.; Zhang, X.; Zhao, X.; Wu, C. Incremental Learning and Fault-tolerant Classifier for Myoelectric Pattern Recognition against Multiple Bursting Interferences. IEEE Trans. Med. Robot. Bionics 2022, 4, 830–839. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, A.; Li, Z.; Wu, Y. Improvement of EMG Pattern Recognition Model Performance in Repeated Uses by Combining Feature Selection and Incremental Transfer Learning. Front. Neurorobotics 2021, 15, 87. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, D.; Jiang, L.; Zhang, H.; Liu, H.; Kotani, K. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition. Sensors 2017, 17, 1370. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Yang, D.; Huang, Q.; Yang, W.; Liu, H. Robust EMG pattern recognition in the presence of confounding factors: Features, classifiers and adaptive learning. Expert Syst. Appl. 2018, 96, 208–217. [Google Scholar] [CrossRef]
- He, J.; Zhang, D.; Zhu, X. Adaptive Pattern Recognition of Myoelectric Signal towards Practical Multifunctional Prosthesis Control. In Proceedings of the Intelligent Robotics and Applications, Busan, Korea, 25–28 September 2013; pp. 518–525. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y.; Yao, F.; Xu, L.; Shang, P.; Li, G. An adaptation strategy of using LDA classifier for EMG pattern recognition. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2013), Osaka, Japan, 3–7 July 2013; pp. 4267–4270. [Google Scholar] [CrossRef]
- Du, L.; Zhang, F.; He, H.; Huang, H. Improving the performance of a neural-machine interface for prosthetic legs using adaptive pattern classifiers. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2013), Osaka, Japan, 3–7 July 2013; pp. 1571–1574. [Google Scholar] [CrossRef]
- Spanias, J.A.; Perreault, E.J.; Hargrove, L.J. A strategy for labeling data for the neural adaptation of a powered lower limb prosthesis. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2014), Chicago, IL, USA, 26–30 August 2014; pp. 3090–3093. [Google Scholar] [CrossRef]
- Spanias, J.A.; Simon, A.M.; Finucane, S.B.; Perreault, E.J.; Hargrove, L.J. Online adaptive neural control of a robotic lower limb prosthesis. J. Neural Eng. 2018, 15, 016015. [Google Scholar] [CrossRef]
- Woodward, R.B.; Spanias, J.A.; Hargrove, L.J. User intent prediction with a scaled conjugate gradient trained artificial neural network for lower limb amputees using a powered prosthesis. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2016), Orlando, FL, USA, 16–20 August 2016; pp. 6405–6408. [Google Scholar]
- Woodward, R.B.; Simon, A.M.; Seyforth, E.A.; Hargrove, L.J. Real-Time Adaptation of an Artificial Neural Network for Transfemoral Amputees using a Powered Prosthesis. IEEE Trans. Biomed. Eng. 2021, 69, 1202–1211. [Google Scholar] [CrossRef]
- Zheng, E.; Wang, Q.; Qiao, H. Locomotion mode recognition with robotic transtibial prosthesis in inter-session and inter-day applications. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1836–1845. [Google Scholar] [CrossRef]
- Zheng, E.; Wang, Q.; Qiao, H. An automatic labeling strategy for locomotion mode recognition with robotic transtibial prosthesis. In Proceedings of the 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER 2019), Suzhou, China, 29 July 2019–2 August 2019; pp. 1010–1013. [Google Scholar]
- Zhang, P.; Zhang, J.; Elsabbagh, A. Lower Limb Motion Intention Recognition Based on sEMG Fusion Features. IEEE Sens. J. 2022, 22, 7005–7014. [Google Scholar] [CrossRef]
- Zhang, X.; Tao, S. Research on Pattern Recognition of Lower Limb Motion Based on Convolutional Neural Network. Wirel. Commun. Mob. Comput. 2022, 2022, 4717413. [Google Scholar] [CrossRef]
- Kyeong, S.; Feng, J.; Ryu, J.K.; Park, J.J.; Lee, K.H.; Kim, J. Surface Electromyography Characteristics for Motion Intention Recognition and Implementation Issues in Lower-limb Exoskeletons. Int. J. Control. Autom. Syst. 2022, 20, 1018–1028. [Google Scholar] [CrossRef]
- Ding, Z.; Yang, C.; Wang, Z.; Yin, X.; Jiang, F. Online adaptive prediction of human motion intention based on semg. Sensors 2021, 21, 2882. [Google Scholar] [CrossRef]
- Labarrière, F.; Thomas, E.; Calistri, L.; Optasanu, V.; Gueugnon, M.; Ornetti, P.; Laroche, D. Machine Learning Approaches for Activity Recognition and/or Activity Prediction in Locomotion Assistive Devices—A Systematic Review. Sensors 2020, 20, 6345. [Google Scholar] [CrossRef]
- Simon, A.M.; Seyforth, E.A.; Hargrove, L.J. Across-day lower limb pattern recognition performance of a powered knee-ankle prosthesis. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob 2018), Enschede, The Netherlands, 26–29 August 2018; pp. 242–247. [Google Scholar]
- Liu, M.; Zhang, F.; Huang, H.H. An adaptive classification strategy for reliable locomotion mode recognition. Sensors 2017, 17, 2020. [Google Scholar] [CrossRef] [Green Version]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Rutherford, D.J.; Hubley-Kozey, C.L.; Stanish, W.D. Maximal voluntary isometric contraction exercises: A methodological investigation in moderate knee osteoarthritis. J. Electromyogr. Kinesiol. 2011, 21, 154–160. [Google Scholar] [CrossRef]
- Hu, B.; Rouse, E.; Hargrove, L. Benchmark datasets for bilateral lower-limb neuromechanical signals from wearable sensors during unassisted locomotion in able-bodied individuals. Front. Robot. AI 2018, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Rouse, E.; Hargrove, L. Fusion of bilateral lower-limb neuromechanical signals improves prediction of locomotor activities. Front. Robot. AI 2018, 5, 78. [Google Scholar] [CrossRef]
- Simon, A.M.; Ingraham, K.A.; Spanias, J.A.; Young, A.J.; Finucane, S.B.; Halsne, E.G.; Hargrove, L.J. Delaying ambulation mode transition decisions improves accuracy of a flexible control system for powered knee-ankle prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 25, 1164–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Cheng, X.; Jabban, L.; Sui, X.; Zhang, D. Motion Intention Prediction and Joint Trajectories Generation Towards Lower Limb Prostheses Using EMG and IMU Signals. IEEE Sens. J. 2022, 22, 10719–10729. [Google Scholar] [CrossRef]
- Bhakta, K.; Camargo, J.; Donovan, L.; Herrin, K.; Young, A. Machine learning model comparisons of user independent & dependent intent recognition systems for powered prostheses. IEEE Robot. Autom. Lett. 2020, 5, 5393–5400. [Google Scholar]
- Bhakta, K.; Camargo, J.; Compton, W.; Herrin, K.; Young, A. Evaluation of Continuous Walking Speed Determination Algorithms and Embedded Sensors for a Powered Knee & Ankle Prosthesis. IEEE Robot. Autom. Lett. 2021, 6, 4820–4826. [Google Scholar]
- Wang, Z.; An, X.; Xu, R.; Meng, L.; Ming, D. A Mode-Specific Classification Based on sEMG for User-Independent Locomotion Transition Recognition. In Proceedings of the 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO 2021), Sanya, China, 27–31 December 2021; pp. 780–784. [Google Scholar]
- Young, A.J.; Simon, A.M.; Fey, N.P.; Hargrove, L.J. Classifying the intent of novel users during human locomotion using powered lower limb prostheses. In Proceedings of the 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER 2013), San Diego, CA, USA, 6–8 November 2013; pp. 311–314. [Google Scholar]
- Young, A.J.; Hargrove, L.J. A classification method for user-independent intent recognition for transfemoral amputees using powered lower limb prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 24, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Lee, B.H.; Maeng, J.; Kim, D.H. sEMG-signal and IMU sensor-based gait sub-phase detection and prediction using a user-adaptive classifier. Med. Eng. Phys. 2019, 69, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, B.; Diment, L.; Granat, M.H. A machine learning classification model for monitoring the daily physical behaviour of lower-limb amputees. Sensors 2021, 21, 7458. [Google Scholar] [CrossRef]
- Jamieson, A.; Murray, L.; Stankovic, L.; Stankovic, V.; Buis, A. Human activity recognition of individuals with lower limb amputation in free-living conditions: A pilot study. Sensors 2021, 21, 8377. [Google Scholar] [CrossRef]
- Zhang, K.; Luo, J.; Xiao, W.; Zhang, W.; Liu, H.; Zhu, J.; Lu, Z.; Rong, Y.; de Silva, C.W.; Fu, C. A subvision system for enhancing the environmental adaptability of the powered transfemoral prosthesis. IEEE Trans. Cybern. 2020, 51, 3285–3297. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Meng, Q.; Chen, C.; Sun, J.; Yu, H. Intelligent Knee Prostheses: A Systematic Review of Control Strategies. J. Bionic Eng. 2022, 21, 1242–1260. [Google Scholar] [CrossRef]
- Kishimoto, K.C.; Héroux, M.E.; Gandevia, S.C.; Butler, J.E.; Diong, J. Estimation of maximal muscle electromyographic activity from the relationship between muscle activity and voluntary activation. J. Appl. Physiol. 2021, 130, 1352–1361. [Google Scholar] [CrossRef] [PubMed]
- Sherratt, F.; Plummer, A.; Iravani, P. Understanding LSTM network behaviour of IMU-based locomotion mode recognition for applications in prostheses and wearables. Sensors 2021, 21, 1264. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Iqbal, N.; Maqbool, H.F.; Khan, M.; Awad, M.I.; Dehghani-Sanij, A.A. Intent based recognition of walking and ramp activities for amputee using sEMG based lower limb prostheses. Biocybern. Biomed. Eng. 2020, 40, 1110–1123. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schulte, R.V.; Prinsen, E.C.; Buurke, J.H.; Poel, M. Adaptive Lower Limb Pattern Recognition for Multi-Day Control. Sensors 2022, 22, 6351. https://doi.org/10.3390/s22176351
Schulte RV, Prinsen EC, Buurke JH, Poel M. Adaptive Lower Limb Pattern Recognition for Multi-Day Control. Sensors. 2022; 22(17):6351. https://doi.org/10.3390/s22176351
Chicago/Turabian StyleSchulte, Robert V., Erik C. Prinsen, Jaap H. Buurke, and Mannes Poel. 2022. "Adaptive Lower Limb Pattern Recognition for Multi-Day Control" Sensors 22, no. 17: 6351. https://doi.org/10.3390/s22176351