A Simulation Study to Assess the Factors of Influence on Mean and Median Frequency of sEMG Signals during Muscle Fatigue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation Procedure
2.2. Mean and Median Frequency
2.3. Techniques to Estimate and Compute the Power Spectral Density
2.3.1. Non-Parametric Estimation
2.3.2. Parametric Estimation
2.4. Statistical Analysis
- method, 6 levels (Welch, Burg 3rd, 4th, 7th, 10th, 15th and 30th order)
- duration, 8 levels (250 ms, 500 ms, 750 ms, 1000 ms, 1250 ms, 1500 ms, 1750 ms, 2000 ms)
- SNR, 4 levels (5 dB, 10 dB, 15 dB, 20 dB)
3. Results
3.1. Mean Frequency
3.2. Median Frequency
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AR | AutoRegressive model |
ARMA | AutoRegressive Moving Average model |
LMSE | Least Mean Square Error |
MDF | Median Frequency |
MAE | Mean Absolute Error |
MNF | Mean Frequency |
MUs | Motor Units |
OV | Overlap |
PSD | Power Spectral Density |
RMS | Root Mean Square |
sEMG | surface Electromyography |
SNR | Signal to Noise Ratio |
T | Time duration |
WL | Window Length |
Appendix A
Welch Window Length and Overlap
- WL = 50%, OV = 50%
- WL = 33%, OV = 50%
- WL = 25%, OV = 50%
- WL = 50%, OV = 25%
- WL = 33%, OV = 25%
- WL = 25%, OV = 25%
- WL = 50%, OV = 10%
- WL = 33%, OV = 10%
- WL = 25%, OV = 10%
- 250 ms
- 500 ms
- 750 ms
- 1000 ms
- 1250 ms
- 1500 ms
- 1750 ms
- 2000 ms
- 5 dB
- 10 dB
- 15 dB
- 20 dB
Source | Sum Sq. | d.f. | Mean Sq. | F | Prob > F |
---|---|---|---|---|---|
method | 688.1 | 8 | 86 | 6.43 | 0 *** |
duration | 71,280 | 7 | 10,182.9 | 761 | 0 *** |
SNR | 108,516,793.5 | 3 | 36,172,264.5 | 2,703,252.41 | 0 *** |
method*duration | 817.4 | 56 | 14.6 | 1.09 | 0.2983 |
method*SNR | 123.9 | 24 | 5.2 | 0.39 | 0.997 |
duration*SNR | 6694.1 | 21 | 318.8 | 23.82 | 0 *** |
method*duration*SNR | 291.2 | 168 | 1.7 | 0.13 | 1 |
Error | 3,849,879 | 287,712 | 13.4 | ||
Total | 112,446,567.4 | 287,999 | |||
Constrained (Type III) sums of squares |
References
- Campanini, I.; Disselhorst-Klug, C.; Rymer, W.Z.; Merletti, R. Surface EMG in Clinical Assessment and Neurorehabilitation: Barriers Limiting Its Use. Front. Neurol. 2020, 11, 934. [Google Scholar] [CrossRef]
- Felici, F.; Del Vecchio, A. Surface Electromyography: What Limits Its Use in Exercise and Sport Physiology? Front. Neurol. 2020, 11, 578504. [Google Scholar] [CrossRef]
- Nasri, N.; Orts-Escolano, S.; Cazorla, M. An sEMG-Controlled 3D Game for Rehabilitation Therapies: Real-Time Time Hand Gesture Recognition Using Deep Learning Techniques. Sensors 2020, 20, 6451. [Google Scholar] [CrossRef]
- Toledo-Pérez, D.; Martínez-Prado, M.; Gómez-Loenzo, R.; Paredes-García, W.; Rodríguez-Reséndiz, J. A Study of Movement Classification of the Lower Limb Based on up to 4-EMG Channels. Electronics 2019, 8, 259. [Google Scholar] [CrossRef] [Green Version]
- Stein, J.; Narendran, K.; McBean, J.; Krebs, K.; Hughes, R. Electromyography-Controlled Exoskeletal Upper-Limb–Powered Orthosis for Exercise Training After Stroke. Am. J. Phys. Med. Rehabil. 2007, 86, 255–261. [Google Scholar] [CrossRef]
- Parajuli, N.; Sreenivasan, N.; Bifulco, P.; Cesarelli, M.; Savino, S.; Niola, V.; Esposito, D.; Hamilton, T.J.; Naik, G.R.; Gunawardana, U.; et al. Real-Time EMG Based Pattern Recognition Control for Hand Prostheses: A Review on Existing Methods, Challenges and Future Implementation. Sensors 2019, 19, 4596. [Google Scholar] [CrossRef] [Green Version]
- Farina, D.; Stegeman, D.F.; Merletti, R. Biophysics of the generation of EMG signals. In Surface Electromyography: Physiology, Engineering, and Applications; Merletti, R., Farina, D., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; Chapter 2; pp. 30–53. [Google Scholar] [CrossRef]
- Ranaldi, S.; Corvini, G.; De Marchis, C.; Conforto, S. The Influence of the SEMG Amplitude Estimation Technique on the EMG–Force Relationship. Sensors 2022, 22, 3972. [Google Scholar] [CrossRef]
- Merletti, R.; Muceli, S. Tutorial. Surface EMG Detection in Space and Time: Best Practices. J. Electromyogr. Kinesiol. 2019, 49, 102363. [Google Scholar] [CrossRef]
- Clancy, E.A.; Farina, D.; Merletti, R. Cross-Comparison of Time- and Frequency-Domain Methods for Monitoring the Myoelectric Signal during a Cyclic, Force-Varying, Fatiguing Hand-Grip Task. J. Electromyogr. Kinesiol. 2005, 15, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Cifrek, M.; Medved, V.; Tonković, S.; Ostojić, S. Surface EMG Based Muscle Fatigue Evaluation in Biomechanics. Clin. Biomech. 2009, 24, 327–340. [Google Scholar] [CrossRef] [PubMed]
- González-Izal, M.; Malanda, A.; Gorostiaga, E.; Izquierdo, M. Electromyographic Models to Assess Muscle Fatigue. J. Electromyogr. Kinesiol. 2012, 22, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Phinyomark, A.; Thongpanja, S.; Hu, H.; Phukpattaranont, P.; Limsakul, C. The Usefulness of Mean and Median Frequencies in Electromyography Analysis. In Computational Intelligence in Electromyography Analysis—A Perspective on Current Applications and Future Challenges; Naik, G.R., Ed.; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Corvini, G.; Holobar, A.; Moreno, J.C. On Repeatability of MU Fatiguing in Low-Level Sustained Isometric Contractions of Tibialis Anterior Muscle. In Converging Clinical and Engineering Research on Neurorehabilitation IV; Torricelli, D., Akay, M., Pons, J.L., Eds.; Biosystems & Biorobotics; Springer International Publishing: Cham, Switzerland, 2022; Volume 28, pp. 909–913. [Google Scholar] [CrossRef]
- Kay, S.M.; Marple, S.L. Spectrum Analysis—A Modern Perspective. Proc. IEEE 1981, 69, 1380–1419. [Google Scholar] [CrossRef]
- Hof, A.L. Errors in Frequency Parameters of EMG Power Spectra. IEEE Trans. Biomed. Eng. 1991, 38, 1077–1088. [Google Scholar] [CrossRef]
- Merletti, R.; Balestra, G.; Knaflitz, M. Effect of FFT Based Algorithms on Estimation of Myoelectric Signal Spectral Parameters. In Images of the Twenty-First Century, Proceedings of the Annual International Engineering in Medicine and Biology Society, Seattle, WA, USA, 9–12 November 1989; IEEE: Piscataway, NJ, USA, 1989; Volume 3, pp. 1022–1023. [Google Scholar] [CrossRef]
- Mañanas, M.A.; Jané, R.; Fiz, J.A.; Morera, J.; Caminal, P. Influence of Estimators of Spectral Density on the Analysis of Electromyographic and Vibromyographic Signals. Med. Biol. Eng. Comput. 2002, 40, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Corvini, G.; D’Anna, C.; Conforto, S. Estimation of Mean and Median Frequency from Synthetic SEMG Signals: Effects of Different Spectral Shapes and Noise on Estimation Methods. Biomed. Signal Process. Control 2022, 73, 103420. [Google Scholar] [CrossRef]
- Farina, D.; Merletti, R. Comparison of Algorithms for Estimation of EMG Variables during Voluntary Isometric Contractions. J. Electromyogr. Kinesiol. 2000, 10, 337–349. [Google Scholar] [CrossRef]
- Lowery, M.M.; Vaughan, C.L.; Nolan, P.J.; O’Malley, M.J. Spectral Compression of the Electromyographic Signal Due to Decreasing Muscle Fiber Conduction Velocity. IEEE Trans. Rehab. Eng. 2000, 8, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.G.; Liu, H.T.; Chan, S.C.; Luk, K.D.K.; Hu, Y. Time-Dependent Power Spectral Density Estimation of Surface Electromyography during Isometric Muscle Contraction: Methods and Comparisons. J. Electromyogr. Kinesiol. 2010, 20, 89–101. [Google Scholar] [CrossRef]
- Bonato, P.; D’Alessio, T.; Knaflitz, M. A Statistical Method for the Measurement of Muscle Activation Intervals from Surface Myoelectric Signal during Gait. IEEE Trans. Biomed. Eng. 1998, 45, 287–299. [Google Scholar] [CrossRef]
- Stulen, F.B.; De Luca, C.J. Frequency Parameters of the Myoelectric Signal as a Measure of Muscle Conduction Velocity. IEEE Trans. Biomed. Eng. 1981, BME-28, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Wang, Y.; Hao, D.; Rong, Y.; Yang, L.; Zhang, S.; Zheng, D. Effects of Force Load, Muscle Fatigue, and Magnetic Stimulation on Surface Electromyography during Side Arm Lateral Raise Task: A Preliminary Study with Healthy Subjects. BioMed Res. Int. 2017, 2017, e8943850. [Google Scholar] [CrossRef] [PubMed]
- Puce, L.; Pallecchi, I.; Marinelli, L.; Mori, L.; Bove, M.; Diotti, D.; Ruggeri, P.; Faelli, E.; Cotellessa, F.; Trompetto, C. Surface Electromyography Spectral Parameters for the Study of Muscle Fatigue in Swimming. Front. Sports Act. Living 2021, 3, 644765. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, M.; D’Anna, C.; Schmid, M.; Conforto, S. Assessing the Influence of SNR and Pre-Processing Filter Bandwidth on the Extraction of Different Muscle Co-Activation Indexes from Surface EMG Data. J. Electromyogr. Kinesiol. 2018, 43, 184–192. [Google Scholar] [CrossRef]
- Oppenheim, A.V.; Schafer, R.W. Digital Signal Processing; Prentice-Hall: Hoboken, NJ, USA, 1975; pp. 548–554. ISBN 0-13-214635-5. [Google Scholar]
- Bartlett, M.S. Periodogram analysis and continuous spectra. Biometrika 1950, 37, 1–16. [Google Scholar] [CrossRef]
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Burg, J.P. Maximum Entropy Spectral Analysis. In Proceedings of the 37th Meeting Society of Exploration Geophysics, Oklahoma City, OK, USA, 31 October 1967. [Google Scholar]
Mean Frequency | Median Frequency | |||||
---|---|---|---|---|---|---|
Source | Mean Sq. | F | Prob > F | Mean Sq. | F | Prob > F |
method | 2.22 × 104 | 2.95 × 103 | 0 *** | 1.52 × 104 | 2.11 × 103 | 0 *** |
duration | 5.67 × 103 | 754.21 | 0 *** | 1.79 × 104 | 2.48 × 103 | 0 *** |
SNR | 2.74 × 107 | 3.65 × 106 | 0 *** | 3.39 × 105 | 4.68 × 104 | 0 *** |
method*duration | 10.05 | 1.33 | 0.07 | 89.06 | 12.30 | 0 *** |
method*SNR | 1.93 × 103 | 257.06 | 0 *** | 9.02 × 103 | 1.24 × 103 | 0 *** |
duration*SNR | 293.79 | 39.02 | 0 *** | 277.71 | 38.36 | 0 *** |
method*duration*SNR | 1.74 | 0.23 | 1 | 21.57 | 2.98 | 0 *** |
Error | 7.52 | 7.23 |
SNR = 5 dB | SNR = 10 dB | SNR = 15 dB | SNR = 20 dB | |||||
---|---|---|---|---|---|---|---|---|
Source | F | Prob > F | F | Prob > F | F | Prob > F | F | Prob > F |
method | 3.17 × 103 | 0 *** | 357.65 | 0 *** | 71.34 | 0 *** | 60.41 | 0 *** |
duration | 186.11 | 0 *** | 629.21 | 0 *** | 1.17 × 103 | 0 *** | 1.35 × 103 | 0 *** |
method*duration | 5.48 | 0 *** | 8.09 | 0 *** | 3.75 | 0 *** | 2.35 | 0 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corvini, G.; Conforto, S. A Simulation Study to Assess the Factors of Influence on Mean and Median Frequency of sEMG Signals during Muscle Fatigue. Sensors 2022, 22, 6360. https://doi.org/10.3390/s22176360
Corvini G, Conforto S. A Simulation Study to Assess the Factors of Influence on Mean and Median Frequency of sEMG Signals during Muscle Fatigue. Sensors. 2022; 22(17):6360. https://doi.org/10.3390/s22176360
Chicago/Turabian StyleCorvini, Giovanni, and Silvia Conforto. 2022. "A Simulation Study to Assess the Factors of Influence on Mean and Median Frequency of sEMG Signals during Muscle Fatigue" Sensors 22, no. 17: 6360. https://doi.org/10.3390/s22176360
APA StyleCorvini, G., & Conforto, S. (2022). A Simulation Study to Assess the Factors of Influence on Mean and Median Frequency of sEMG Signals during Muscle Fatigue. Sensors, 22(17), 6360. https://doi.org/10.3390/s22176360