Self-Sustainable Biomedical Devices Powered by RF Energy: A Review
Abstract
:1. Introduction
- The widespread availability of RF energy makes it suitable to supply sustainable energy for various biomedical devices when compared with other energy harvesting technologies such as thermal, solar, and vibration.
- Unlike solar, RFEH is a cost-effective technology and can be used to power the IMDs.
- In comparison with solar, kinetic, and thermal energy, RFEH does not depend on the light source, body motion, or temperature.
Reference | Energy source | Power density | Efficiency (%) | Advantage | Bottleneck |
---|---|---|---|---|---|
[30,31] | Perovskite solar cells | 35.0 W/cm | 25.2 | Flexible and lightweight; suitable for wearable applications | Require light |
[32,33,34,35] | Thermoelectric | Human: 100 W/cm Industrial: 100 mW/cm | 10–15 | Cost-effective technology; does not require body motion or light | Low power source |
[36,37] | Acoustic | 1.436 mW/cm at 123 dB | 0.012 | Require minimum maintenance; suitable to be used in remote or inaccessible locations | Hard to capture energy from the sounds wave source |
[35,38,39,40] | Pyroelectric | 3.5 W/cm at the temperature rate of 85 °C/s Hz | 1–3.5 | Cost-effective technology; ubiquitous and serves as a low-grade waste | Low output power |
[41,42,43] | Piezoelectric | 29.2 W/mm | 83.3 | Does not require RF waves or light | low power source; require body activity |
[44,45,46] | Biofuel cells | 3.7 mW cm | 86 | The integration of the power module and sensing module results in better compactness; does not require RF waves, body activity, or light | The analyte concentration influences the power density |
[47,48] | Triboelectric | 2.5 W/m | —— | Simple fabrication process and low cost | low power source; require body activity |
[38] | RFEH | GSM: 0.1 W/cm WiFi: 0.01 W/cm | 50–70 | Does not require light or body motion and is continuously available | Low output power; distant dependent |
2. RF Energy Harvesting Principles
2.1. Antenna Design and Characteristics for RF Energy Harvesting
2.1.1. Wearable Antenna Design for RF Energy Harvesting
2.1.2. Implantable Antenna Design for RF Energy Harvesting
2.2. Impedance Matching Network
2.3. Rectifier Circuit Design and Topologies
3. RF Energy Harvesting Application in Medical Devices
3.1. RF Energy Harvesting for Wearable Medical Devices
3.1.1. Wearable Inkjet-Printed RF Energy Harvester
3.1.2. Textile-Based Wearable RF Energy Harvester
3.1.3. Stretchable and Flexible RF Energy Harvester
3.1.4. Discussion
- The efficiency of the system determined by the suitable range and operating frequency;
- The design and integration of an appropriate rectifier circuit by evaluating the required output power and input sensitivity;
- The integration of a compact matching network for maximum power transfer independent of input power, frequency, or load change;
- The received signal strength is dependent on the design of an antenna with high gain and wide bandwidth;
- The design of a flexible and lightweight rectenna, capable of harvesting RF power from numerous RF sources, distributed randomly in the space;
- The antenna used in the wearable rectenna design should withstand various mechanical deformations such as stretching, bending, rolling, and twisting.
3.2. RF Energy Harvesting for Implantable Medical Devices
3.2.1. Near Field
3.2.2. Midfield
3.2.3. Far Field
3.2.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghomian, T.; Mehraeen, S. Survey of energy scavenging for wearable and implantable devices. Energy 2019, 178, 33–49. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, F.; Shakhsheer, Y.; Silver, J.D.; Klinefelter, A.; Nagaraju, M.; Boley, J.; Pandey, J.; Shrivastava, A.; Carlson, E.J.; et al. A batteryless MICS/ISM-Band energy harvesting body sensor node SoC for ExG applications. IEEE J. Solid-State Circuits 2012, 48, 199–213. [Google Scholar] [CrossRef]
- Wright, J.; Wong, J.; Chang, Y.C.; Ahmed, U.; Zanos, S.; Datta-Chaudhuri, T. A low-power implantable neurostimulator for small rodents with functional validation. In Proceedings of the 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Nara, Japan, 17–19 October 2019; pp. 1–4. [Google Scholar]
- Sriramdas, R.; Pratap, R. Scaling and performance analysis of MEMS piezoelectric energy harvesters. J. Microelectromech. Syst. 2017, 26, 679–690. [Google Scholar] [CrossRef]
- Kwan, J.C.; Chaulk, J.M.; Fapojuwo, A.O. A coordinated Ambient/Dedicated radio frequency energy harvesting scheme using machine learning. IEEE Sens. J. 2020, 20, 13808–13823. [Google Scholar] [CrossRef]
- Alkhalaf, H.Y.; Samsuzzaman, M.; Moniruzzaman, M.; Islam, M.T. Electromagnetic Energy Harvesting Using 2.40 Ghz Compact High Gain Patch Antenna. J. Eng. Sci. Technol. 2022, 17, 0294–0305. [Google Scholar]
- Shi, Y.; Jing, J.; Fan, Y.; Yang, L.; Wang, M. Design of a novel compact and efficient rectenna for WiFi energy harvesting. Prog. Electromagn. Res. C 2018, 83, 57–70. [Google Scholar] [CrossRef]
- Kadir, E.A.; Hu, A.P. A power processing circuit for indoor Wi-Fi energy harvesting for ultra-low power wireless sensors. Appl. Sci. 2017, 7, 827. [Google Scholar] [CrossRef]
- Talla, V.; Kellogg, B.; Ransford, B.; Naderiparizi, S.; Gollakota, S.; Smith, J.R. Powering the next billion devices with Wi-Fi. In Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies, Online, 1 December 2015; pp. 1–13. [Google Scholar]
- Alneyadi, F.; Alkaabi, M.; Alketbi, S.; Hajraf, S.; Ramzan, R. 2.4 GHz WLAN RF energy harvester for passive indoor sensor nodes. In Proceedings of the 2014 IEEE International Conference on Semiconductor Electronics (ICSE2014), Kuala Lumpur, Malaysia, 27–29 August 2014; pp. 471–474. [Google Scholar]
- Surender, D.; Halimi, M.A.; Khan, T.; Talukdar, F.A.; Koul, S.K.; Antar, Y.M. 2.45 GHz Wi-Fi band operated circularly polarized rectenna for RF energy harvesting in smart city applications. J. Electromagn. Waves Appl. 2022, 36, 407–423. [Google Scholar] [CrossRef]
- Galchev, T.; McCullagh, J.; Peterson, R.L.; Najafi, K.; Mortazawi, A. Energy harvesting of radio frequency and vibration energy to enable wireless sensor monitoring of civil infrastructure. In Proceedings of the Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security; International Society for Optics and Photonics: San Diego, CA, USA, 2011; Volume 7983, p. 798314. [Google Scholar]
- Leon-Gil, J.A.; Cortes-Loredo, A.; Fabian-Mijangos, A.; Martinez-Flores, J.J.; Tovar-Padilla, M.; Cardona-Castro, M.A.; Morales-Sánchez, A.; Alvarez-Quintana, J. Medium and short wave RF energy harvester for powering wireless sensor networks. Sensors 2018, 18, 768. [Google Scholar] [CrossRef]
- Muhammad, S.; Jiat Tiang, J.; Kin Wong, S.; Iqbal, A.; Alibakhshikenari, M.; Limiti, E. Compact rectifier circuit design for harvesting GSM/900 ambient energy. Electronics 2020, 9, 1614. [Google Scholar] [CrossRef]
- Le, M.T.; Vu, H.S.; Truong, T.; Vu, H.T.; Nguyen, Q.C. Circularly polarized meandered-loop antenna for ambient RF energy harvesting system. In Proceedings of the 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE), Phu Quoc Island, Vietnam, 13–15 January 2021; pp. 225–229. [Google Scholar]
- Zeng, M.; Andrenko, A.S.; Liu, X.; Li, Z.; Tan, H.Z. A compact fractal loop rectenna for RF energy harvesting. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2424–2427. [Google Scholar] [CrossRef]
- Zeng, M.; Li, Z.; Andrenko, A.S.; Zeng, Y.; Tan, H.Z. A compact dual-band rectenna for GSM900 and GSM1800 energy harvesting. Int. J. Antennas Propag. 2018, 2018, 9. [Google Scholar] [CrossRef]
- Khemar, A.; Kacha, A.; Takhedmit, H.; Abib, G. Design and experiments of a 3G-band rectenna for radio frequency energy harvesting. Rev. Roum. Sci. Techn Energ. 2017, 62, 82–86. [Google Scholar]
- Zhang, J.; Huang, Y.; Cao, P. A microwave wireless energy harvesting system with a wideband antenna array. Trans. Inst. Meas. Control 2015, 37, 961–969. [Google Scholar] [CrossRef]
- Moura, T.; de Carvalho, N.B.; Pinho, P. Design of an efficient D-TV energy harvesting system for low-power applications. In Proceedings of the 2015 IEEE 15th Mediterranean Microwave Symposium (MMS), Lecce, Italy, 30 November–2 2015; pp. 1–4. [Google Scholar]
- Sample, A.; Smith, J.R. Experimental results with two wireless power transfer systems. In Proceedings of the 2009 IEEE Radio and Wireless Symposium, San Diego, CA, USA, 18–22 January 2009; pp. 16–18. [Google Scholar]
- Xie, D.; Liu, X.; Guo, H.; Yang, X. Square electrically small EAD antenna array for RF energy harvesting from TV broadcast tower. In Proceedings of the 2014 Asia-Pacific Microwave Conference, Sendai, Japan, 4–7 November 2014; pp. 1357–1359. [Google Scholar]
- Vyas, R.J.; Cook, B.B.; Kawahara, Y.; Tentzeris, M.M. E-WEHP: A batteryless embedded sensor-platform wirelessly powered from ambient digital-TV signals. IEEE Trans. Microw. Theory Tech. 2013, 61, 2491–2505. [Google Scholar] [CrossRef]
- Chong, Y.W.; Ismail, W.; Ko, K.; Lee, C.Y. Energy harvesting for wearable devices: A review. IEEE Sens. J. 2019, 19, 9047–9062. [Google Scholar] [CrossRef]
- Dinis, H.; Colmiais, I.; Mendes, P.M. Extending the limits of wireless power transfer to miniaturized implantable electronic devices. Micromachines 2017, 8, 359. [Google Scholar] [CrossRef]
- Gao, M.; Wang, P.; Jiang, L.; Wang, B.; Yao, Y.; Liu, S.; Chu, D.; Cheng, W.; Lu, Y. Power generation for wearable systems. Energy Environ. Sci. 2021, 14, 2114–2157. [Google Scholar] [CrossRef]
- Hasan, M.N.; Sahlan, S.; Osman, K.; Mohamed Ali, M.S. Energy harvesters for wearable electronics and biomedical devices. Adv. Mater. Technol. 2021, 6, 2000771. [Google Scholar] [CrossRef]
- Rong, G.; Zheng, Y.; Sawan, M. Energy solutions for wearable sensors: A review. Sensors 2021, 21, 3806. [Google Scholar] [CrossRef]
- Roy, S.; Azad, A.W.; Baidya, S.; Alam, M.K.; Khan, F.H. Powering Solutions for Biomedical Sensors and Implants inside Human BodyA Comprehensive Review on Energy Harvesting Units, Energy Storage, and Wireless Power Transfer Techniques. IEEE Trans. Power Electron. 2022, 37, 12237–12263. [Google Scholar] [CrossRef]
- Kim, B.J.; Kim, D.H.; Lee, Y.Y.; Shin, H.W.; Han, G.S.; Hong, J.S.; Mahmood, K.; Ahn, T.K.; Joo, Y.C.; Hong, K.S.; et al. Highly efficient and bending durable perovskite solar cells: Toward a wearable power source. Energy Environ. Sci. 2015, 8, 916–921. [Google Scholar] [CrossRef]
- Castro-Hermosa, S.; Lucarelli, G.; Top, M.; Fahland, M.; Fahlteich, J.; Brown, T.M. Perovskite photovoltaics on roll-to-roll coated ultra-thin glass as flexible high-efficiency indoor power generators. Cell Rep. Phys. Sci. 2020, 1, 100045. [Google Scholar] [CrossRef]
- Mallick, M.M.; Rösch, A.G.; Franke, L.; Ahmed, S.; Gall, A.; Geßwein, H.; Aghassi, J.; Lemmer, U. High-performance Ag–Se-based n-type printed thermoelectric materials for high power density folded generators. ACS Appl. Mater. Interfaces 2020, 12, 19655–19663. [Google Scholar] [CrossRef] [PubMed]
- Akbari, S. Energy harvesting for wireless sensor networks review. In Proceedings 2014 Federated Conference on Computer Science and Information Systems; Institute of Electrical and Electronics: Warsaw, Poland, 2014; pp. 987–992. [Google Scholar]
- Zhou, G.; Huang, L.; Li, W.; Zhu, Z. Harvesting ambient environmental energy for wireless sensor networks: A survey. J. Sens. 2014, 2014, 815467. [Google Scholar] [CrossRef]
- Matiko, J.W.; Grabham, N.J.; Beeby, S.P.; Tudor, M.J. Review of the application of energy harvesting in buildings. Meas. Sci. Technol. 2013, 25, 012002. [Google Scholar] [CrossRef]
- Fang, L.H.; Hassan, S.I.S.; Abd Rahim, R.B.; Nordin, J.M. A review of techniques design acoustic energy harvesting. In Proceedings of the 2015 IEEE Student Conference on Research and Development (SCOReD), Kuala Lumpur, Malaysia, 13–14 December 2015; pp. 37–42. [Google Scholar]
- Khan, F.U.; Izhar, I. Acoustic-based electrodynamic energy harvester for wireless sensor nodes application. Int. J. Mater. Sci. Eng 2013, 1, 72–78. [Google Scholar] [CrossRef]
- Visconti, P.; Primiceri, P.; Ferri, R.; Pucciarelli, M.; Venere, E. An overview on state-of-art energy harvesting techniques and choice criteria: A wsn node for goods transport and storage powered by a smart solar-based eh system. Int. J. Renew. Energy Res 2017, 7, 1281–1295. [Google Scholar]
- Thakre, A.; Kumar, A.; Song, H.C.; Jeong, D.Y.; Ryu, J. Pyroelectric energy conversion and its applications—Flexible energy harvesters and sensors. Sensors 2019, 19, 2170. [Google Scholar] [CrossRef]
- Hunter, S.R.; Lavrik, N.V.; Mostafa, S.; Rajic, S.; Datskos, P.G. Review of pyroelectric thermal energy harvesting and new MEMs-based resonant energy conversion techniques. Energy Harvest. Storage: Mater. Devices, Appl. III 2012, 8377, 77–90. [Google Scholar]
- Yue, Y.; Hou, Y.; Zheng, M.; Yan, X.; Fu, J.; Zhu, M. High power density in a piezoelectric energy harvesting ceramic by optimizing the sintering temperature of nanocrystalline powders. J. Eur. Ceram. Soc. 2017, 37, 4625–4630. [Google Scholar] [CrossRef]
- Do, X.D.; Jeong, C.J.; Nguyen, H.H.; Han, S.K.; Lee, S.G. A high efficiency piezoelectric energy harvesting system. In Proceedings of the 2011 International SoC Design Conference, Jeju, Korea, 17–18 November 2011; pp. 389–392. [Google Scholar]
- Wu, Y.; Qu, J.; Daoud, W.A.; Wang, L.; Qi, T. Flexible composite-nanofiber based piezo-triboelectric nanogenerators for wearable electronics. J. Mater. Chem. A 2019, 7, 13347–13355. [Google Scholar] [CrossRef]
- Sharma, H.; Haque, A.; Jaffery, Z.A. Solar energy harvesting wireless sensor network nodes: A survey. J. Renew. Sustain. Energy 2018, 10, 023704. [Google Scholar] [CrossRef]
- Kwon, C.H.; Ko, Y.; Shin, D.; Kwon, M.; Park, J.; Bae, W.K.; Lee, S.W.; Cho, J. High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Talkhooncheh, A.H.; Yu, Y.; Agarwal, A.; Kuo, W.W.T.; Chen, K.C.; Wang, M.; Hoskuldsdottir, G.; Gao, W.; Emami, A. A biofuel-cell-based energy harvester with 86% peak efficiency and 0.25-V minimum input voltage using source-adaptive MPPT. IEEE J. Solid-State Circuits 2020, 56, 715–728. [Google Scholar] [CrossRef]
- Song, Z.; Li, W.; Kong, H.; Bao, Y.; Wang, N.; Wang, W.; Ma, Y.; He, Y.; Gan, S.; Niu, L. Enhanced energy harvesting performance of triboelectric nanogenerator via efficient dielectric modulation dominated by interfacial interaction. Nano Energy 2022, 92, 106759. [Google Scholar] [CrossRef]
- Jiang, Y.; Dong, K.; An, J.; Liang, F.; Yi, J.; Peng, X.; Ning, C.; Ye, C.; Wang, Z.L. UV-protective, self-cleaning, and antibacterial nanofiber-based triboelectric nanogenerators for self-powered human motion monitoring. ACS Appl. Mater. Interfaces 2021, 13, 11205–11214. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Kraus, J.D.; Marhefka, R.J.; Khan, A.S. Antennas and Wave Propagation; Tata McGraw-Hill Education: New York, NY, USA, 2006. [Google Scholar]
- Awais, Q.; Jin, Y.; Chattha, H.T.; Jamil, M.; Qiang, H.; Khawaja, B.A. A compact rectenna system with high conversion efficiency for wireless energy harvesting. IEEE Access 2018, 6, 35857–35866. [Google Scholar] [CrossRef]
- Yin, N.; Xu, G.; Yang, Q.; Zhao, J.; Yang, X.; Jin, J.; Fu, W.; Sun, M. Analysis of wireless energy transmission for implantable device based on coupled magnetic resonance. IEEE Trans. Magn. 2012, 48, 723–726. [Google Scholar] [CrossRef]
- Wu, K.; Choudhury, D.; Matsumoto, H. Wireless power transmission, technology, and applications [scanning the issue]. Proc. IEEE 2013, 101, 1271–1275. [Google Scholar] [CrossRef]
- Mur-Miranda, J.O.; Fanti, G.; Feng, Y.; Omanakuttan, K.; Ongie, R.; Setjoadi, A.; Sharpe, N. Wireless power transfer using weakly coupled magnetostatic resonators. In Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 12–16 September 2010; pp. 4179–4186. [Google Scholar]
- Mendes Duarte, R.; Klaric Felic, G. Analysis of the coupling coefficient in inductive energy transfer systems. Act. Passiv. Electron. Components 2014, 2014, 951624. [Google Scholar] [CrossRef]
- Kim, S.; Vyas, R.; Bito, J.; Niotaki, K.; Collado, A.; Georgiadis, A.; Tentzeris, M.M. Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proc. IEEE 2014, 102, 1649–1666. [Google Scholar] [CrossRef]
- Xia, M.; Aissa, S. On the efficiency of far-field wireless power transfer. IEEE Trans. Signal Process. 2015, 63, 2835–2847. [Google Scholar] [CrossRef]
- Shinohara, N. Power without wires. IEEE Microw. Mag. 2011, 12, S64–S73. [Google Scholar] [CrossRef]
- Shrestha, S.; Noh, S.K.; Choi, D.Y. Comparative study of antenna designs for RF energy harvesting. Int. J. Antennas Propag. 2013, 2013, 385260. [Google Scholar] [CrossRef]
- Locher, I.; Klemm, M.; Kirstein, T.; Troster, G. Design and characterization of purely textile patch antennas. IEEE Trans. Adv. Packag. 2006, 29, 777–788. [Google Scholar] [CrossRef]
- Wagih, M.; Weddell, A.S.; Beeby, S. Powering E-Textiles Using a Single Thread Radio Frequency Energy Harvesting Rectenna. Proceedings 2021, 68, 16. [Google Scholar]
- Chi, Y.J.; Lin, C.H.; Chiu, C.W. Design and modeling of a wearable textile rectenna array implemented on Cordura fabric for batteryless applications. J. Electromagn. Waves Appl. 2020, 34, 1782–1796. [Google Scholar] [CrossRef]
- Wagih, M.; Weddell, A.S.; Beeby, S. Omnidirectional Dual-Polarized Low-Profile Textile Rectenna with over 50% Efficiency for Sub-μW/cm2 Wearable Power Harvesting. IEEE Trans. Antennas Propag. 2020, 69, 2522–2536. [Google Scholar] [CrossRef]
- Berges, R.; Fadel, L.; Oyhenart, L.; Vigneras, V.; Taris, T. Conformable dual-band wireless energy harvester dedicated to the urban environment. Microw. Opt. Technol. Lett. 2020, 62, 3391–3400. [Google Scholar] [CrossRef]
- Alex-Amor, A.; Palomares-Caballero, Á.; Moreno-Núñez, J.; Tamayo-Domínguez, A.; García-García, C.; Fernández-González, J.M. Ultrawideband inkjet-printed monopole antennas for energy harvesting application. Microw. Opt. Technol. Lett. 2021, 63, 1719–1726. [Google Scholar] [CrossRef]
- Yu, B.Y.; Wang, Z.H.; Ju, L.; Zhang, C.; Liu, Z.G.; Tao, L.; Lu, W.B. Flexible and wearable hybrid rf and solar energy harvesting system. IEEE Trans. Antennas Propag. 2021, 70, 2223–2233. [Google Scholar] [CrossRef]
- Chen, Z.; Xi, J.; Huang, W.; Yuen, M.M. Stretchable conductive elastomer for wireless wearable communication applications. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Myers, A.C.; Adams, J.J.; Zhu, Y. Stretchable and reversibly deformable radio frequency antennas based on silver nanowires. ACS Appl. Mater. Interfaces 2014, 6, 4248–4253. [Google Scholar] [CrossRef] [PubMed]
- Nikbakhtnasrabadi, F.; El Matbouly, H.; Ntagios, M.; Dahiya, R. Textile-Based Stretchable Microstrip Antenna with Intrinsic Strain Sensing. ACS Appl. Electron. Mater. 2021, 3, 2233–2246. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Fox, J.J.; Yi, N.; Cheng, H. Structural design for stretchable microstrip antennas. ACS Appl. Mater. Interfaces 2019, 11, 8867–8877. [Google Scholar] [CrossRef]
- Jeong, Y.R.; Kim, J.; Xie, Z.; Xue, Y.; Won, S.M.; Lee, G.; Jin, S.W.; Hong, S.Y.; Feng, X.; Huang, Y.; et al. A skin-attachable, stretchable integrated system based on liquid GaInSn for wireless human motion monitoring with multi-site sensing capabilities. NPG Asia Mater. 2017, 9, e443. [Google Scholar] [CrossRef]
- He, P.; Cao, M.S.; Cao, W.Q.; Yuan, J. Developing MXenes from wireless communication to electromagnetic attenuation. Nano-Micro Lett. 2021, 13, 1–34. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, T.; Zhu, P.; Zhu, Y.; Shuai, X.; Liang, X.; Sun, R.; Lu, D.D.; Wong, C.P. Low cost and highly conductive elastic composites for flexible and printable electronics. J. Mater. Chem. C 2016, 4, 5839–5848. [Google Scholar] [CrossRef]
- Li, Y.; Tian, X.; Gao, S.P.; Jing, L.; Li, K.; Yang, H.; Fu, F.; Lee, J.Y.; Guo, Y.X.; Ho, J.S.; et al. Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 2020, 30, 1907451. [Google Scholar] [CrossRef]
- So, J.H.; Thelen, J.; Qusba, A.; Hayes, G.J.; Lazzi, G.; Dickey, M.D. Reversibly deformable and mechanically tunable fluidic antennas. Adv. Funct. Mater. 2009, 19, 3632–3637. [Google Scholar] [CrossRef]
- Tahir, F.A.; Javed, A. A compact dual-band frequency-reconfigurable textile antenna for wearable applications. Microw. Opt. Technol. Lett. 2015, 57, 2251–2257. [Google Scholar] [CrossRef]
- Sharma, R.; Mishra, R.; Ngo, T.; Guo, Y.X.; Fukami, S.; Sato, H.; Ohno, H.; Yang, H. Electrically connected spin-torque oscillators array for 2.4 GHz WiFi band transmission and energy harvesting. Nat. Commun. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Vallem, V.; Sargolzaeiaval, Y.; Ozturk, M.; Lai, Y.C.; Dickey, M.D. Energy harvesting and storage with soft and stretchable materials. Adv. Mater. 2021, 33, 2004832. [Google Scholar] [CrossRef] [PubMed]
- Elhebeary, M.R.; Ibrahim, M.A.; Aboudina, M.M.; Mohieldin, A.N. Dual-source self-start high-efficiency microscale smart energy harvesting system for IoT. IEEE Trans. Ind. Electron. 2017, 65, 342–351. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, J.; Zhang, Y.; Chen, Z.; Song, C.; Li, J.; Yi, N.; Qiu, D.; Guo, K.; Zhang, C.; et al. Standalone stretchable RF systems based on asymmetric 3D microstrip antennas with on-body wireless communication and energy harvesting. Nano Energy 2022, 96, 107069. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, Z.; Song, C.; Yi, N.; Yu, Z.; Liu, Z.; Liu, S.; Wang, M.; Dexheimer, M.G.; Yang, J.; et al. Stretchable wideband dipole antennas and rectennas for RF energy harvesting. Mater. Today Phys. 2021, 18, 100377. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, X.; Xu, C. A Broad Dual-Band Implantable Antenna for RF Energy Harvesting and Data Transmitting. Micromachines 2022, 13, 563. [Google Scholar] [CrossRef]
- Ding, S.; Koulouridis, S.; Pichon, L. Implantable wireless transmission rectenna system for biomedical wireless applications. IEEE Access 2020, 8, 195551–195558. [Google Scholar] [CrossRef]
- Bakogianni, S.; Koulouridis, S. A dual-band implantable rectenna for wireless data and power support at sub-GHz region. IEEE Trans. Antennas Propag. 2019, 67, 6800–6810. [Google Scholar] [CrossRef]
- Iqbal, A.; Al-Hasan, M.; Mabrouk, I.B.; Basir, A.; Nedil, M.; Yoo, H. Biotelemetry and wireless powering of biomedical implants using a rectifier integrated self-diplexing implantable antenna. IEEE Trans. Microw. Theory Tech. 2021, 69, 3438–3451. [Google Scholar] [CrossRef]
- Shaw, T.; Samanta, G.; Mitra, D. Efficient wireless power transfer system for implantable medical devices using circular polarized antennas. IEEE Trans. Antennas Propag. 2020, 69, 4109–4122. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wu, Z.T.; Fan, Y.; Tentzeris, E.M. A miniaturized CSRR loaded wide-beamwidth circularly polarized implantable antenna for subcutaneous real-time glucose monitoring. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 577–580. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Liu, X. Circularly polarized implantable antenna for 915 MHz ISM-band far-field wireless power transmission. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 373–376. [Google Scholar] [CrossRef]
- Xu, C.; Fan, Y.; Liu, X. A Circularly Polarized Implantable Rectenna for Microwave Wireless Power Transfer. Micromachines 2022, 13, 121. [Google Scholar] [CrossRef]
- Psathas, K.A.; Kiourti, A.; Nikita, K.S. Biocompatibility of implantable antennas: Design and performance considerations. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; pp. 1566–1570. [Google Scholar]
- Blauert, J.; Kang, Y.S.; Kiourti, A. In vivo testing of a miniature 2.4/4.8 GHz implantable antenna in postmortem human subject. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2334–2338. [Google Scholar] [CrossRef]
- Bakogianni, S.; Koulouridis, S. An implantable planar dipole antenna for wireless medradio-band biotelemetry devices. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 234–237. [Google Scholar] [CrossRef]
- Guido, K.; Kiourti, A. Wireless wearables and implants: A dosimetry review. Bioelectromagnetics 2020, 41, 3–20. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, C.; Jiang, Z.H.; Zhang, Y.; Liu, X.; Guo, H.; Yang, X. Near-field wireless power transfer to deep-tissue implants for biomedical applications. IEEE Trans. Antennas Propag. 2019, 68, 1098–1106. [Google Scholar] [CrossRef]
- Ababneh, M.M.; Jasim, M.; Puttananjegowda, K.; Perez, S.; Afroz, S.; Thomas, S.; Tan, Y.K. Design of a SiC implantable rectenna for wireless in-vivo biomedical devices. In Proceedings of the 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New York, NY, USA, 19–21 October 2017; pp. 254–257. [Google Scholar]
- Basir, A.; Yoo, H. Efficient wireless power transfer system with a miniaturized quad-band implantable antenna for deep-body multitasking implants. IEEE Trans. Microw. Theory Tech. 2020, 68, 1943–1953. [Google Scholar] [CrossRef]
- Wang, H.; Mercier, P.P. Near-zero-power temperature sensing via tunneling currents through complementary metal-oxide-semiconductor transistors. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, M.; Mabrouk, I.B.; Faisal, F.; Zada, M.; Bashir, Z.; Akram, A.; Nedil, M.; Yoo, H. Compacted conformal implantable antenna with multitasking capabilities for ingestible capsule endoscope. IEEE Access 2020, 8, 157617–157627. [Google Scholar] [CrossRef]
- Wagih, M.; Komolafe, A.; Weddell, A.S.; Beeby, S. Broadband Compact Substrate-Independent Textile Wearable Antenna for Simultaneous Near-and Far-Field Wireless Power Transmission. IEEE Open J. Antennas Propag. 2022, 3, 398–411. [Google Scholar] [CrossRef]
- Borgoñós-García, M.; López-Yela, A.; Segovia-Vargas, D. Rectenna at 2.45 GHz for Wearable Applications. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–5. [Google Scholar]
- Boopathi, C.; Sivaram, M.; Sundararajan, T.; Maheswar, R.; Yupapin, P.; Amiri, I.S. Bandenna for RF energy harvesting and flexible electronics. Microsyst. Technol. 2021, 27, 1857–1861. [Google Scholar] [CrossRef]
- Wagih, M.; Weddell, A.S.; Beeby, S. Meshed high-impedance matching network-free rectenna optimized for additive manufacturing. IEEE Open J. Antennas Propag. 2020, 1, 615–626. [Google Scholar] [CrossRef]
- Lopez, A.R. Review of narrowband impedance-matching limitations. IEEE Antennas Propag. Mag. 2004, 46, 88–90. [Google Scholar] [CrossRef]
- Song, C.; Huang, Y.; Carter, P.; Zhou, J.; Yuan, S.; Xu, Q.; Kod, M. A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting. IEEE Trans. Antennas Propag. 2016, 64, 3160–3171. [Google Scholar] [CrossRef]
- Hashemi, S.S.; Sawan, M.; Savaria, Y. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 326–335. [Google Scholar] [CrossRef]
- Gosset, G.; Flandre, D. Fully-automated and portable design methodology for optimal sizing of energy-efficient CMOS voltage rectifiers. IEEE J. Emerg. Sel. Top. Circuits Syst. 2011, 1, 141–149. [Google Scholar] [CrossRef]
- Kailuke, A.C.; Agrawal, P.; Kshirsagar, R. Design and implementation of low power dickson charge pump in 0.18 μm CMOS process. A A 2013, 15, 3. [Google Scholar]
- Lo, B.; Thiemjarus, S.; Panousopoulou, A.; Yang, G.Z. Bioinspired design for body sensor networks [life sciences]. IEEE Signal Process. Mag. 2012, 30, 165–170. [Google Scholar] [CrossRef]
- Khan, N.U.; Khan, F.U. RF Energy Harvesting for Portable Biomedical Devices. In Proceedings of the 2019 22nd International Multitopic Conference (INMIC), Islamabad, Pakistan, 29–30 November 2019; pp. 1–6. [Google Scholar]
- Sarpeshkar, R.; Salthouse, C.; Sit, J.J.; Baker, M.W.; Zhak, S.M.; Lu, T.T.; Turicchia, L.; Balster, S. An ultra-low-power programmable analog bionic ear processor. IEEE Trans. Biomed. Eng. 2005, 52, 711–727. [Google Scholar] [CrossRef] [PubMed]
- Saati, S.; Lo, R.; Li, P.Y.; Meng, E.; Varma, R.; Humayun, M.S. Mini drug pump for ophthalmic use. Trans. Am. Ophthalmol. Soc. 2009, 107, 60. [Google Scholar] [CrossRef] [PubMed]
- Wise, K.D.; Anderson, D.J.; Hetke, J.F.; Kipke, D.R.; Najafi, K. Wireless implantable microsystems: High-density electronic interfaces to the nervous system. Proc. IEEE 2004, 92, 76–97. [Google Scholar] [CrossRef]
- Chen, G.; Ghaed, H.; Haque, R.u.; Wieckowski, M.; Kim, Y.; Kim, G.; Fick, D.; Kim, D.; Seok, M.; Wise, K.; et al. A cubic-millimeter energy-autonomous wireless intraocular pressure monitor. In Proceedings of the 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 20–24 February 2011; pp. 310–312. [Google Scholar]
- Dieffenderfer, J.; Goodell, H.; Mills, S.; McKnight, M.; Yao, S.; Lin, F.; Beppler, E.; Bent, B.; Lee, B.; Misra, V.; et al. Low-power wearable systems for continuous monitoring of environment and health for chronic respiratory disease. IEEE J. Biomed. Health Inform. 2016, 20, 1251–1264. [Google Scholar] [CrossRef]
- Turicchia, L.; Do Valle, B.; Bohorquez, J.L.; Sanchez, W.R.; Misra, V.; Fay, L.; Tavakoli, M.; Sarpeshkar, R. Ultralow-power electronics for cardiac monitoring. IEEE Trans. Circuits Syst. I: Regul. Pap. 2010, 57, 2279–2290. [Google Scholar] [CrossRef]
- Silveira, F.; Flandre, D. Low Power Analog CMOS for Cardiac Pacemakers: Design and Optimization in Bulk and SOI Technologies; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004; Volume 758. [Google Scholar]
- Weiland, J.D.; Liu, W.; Humayun, M.S. Retinal prosthesis. Annu. Rev. Biomed. Eng. 2005, 7, 361–401. [Google Scholar] [CrossRef]
- Aileni, R.M.; Valderrama, A.C.; Strungaru, R. Wearable electronics for elderly health monitoring and active living. In Ambient Assisted Living and Enhanced Living Environments; Elsevier: Amsterdam, The Netherlands, 2017; pp. 247–269. [Google Scholar]
- Hoyt, R.W.; Reifman, J.; Coster, T.S.; Buller, M.J. Combat medical informatics: Present and future. In Proceedings of the AMIA Symposium; American Medical Informatics Association: Bethesda, MD, USA, 2002; p. 335. [Google Scholar]
- Channa, A.; Popescu, N.; Skibinska, J.; Burget, R. The rise of wearable devices during the COVID-19 pandemic: A systematic review. Sensors 2021, 21, 5787. [Google Scholar] [CrossRef]
- Deng, F.; He, Y.; Li, B.; Zhang, L.; Wu, X.; Fu, Z.; Zuo, L. Design of an embedded CMOS temperature sensor for passive RFID tag chips. Sensors 2015, 15, 11442–11453. [Google Scholar] [CrossRef]
- Lee, J.; Cho, S. A 1.4-μW 24.9-ppm/°C current reference with process-insensitive temperature compensation in 0.18-μm CMOS. IEEE J. Solid-State Circuits 2012, 47, 2527–2533. [Google Scholar] [CrossRef]
- Souri, K.; Chae, Y.; Thus, F.; Makinwa, K. 12.7 A 0.85 V 600nW all-CMOS temperature sensor with an inaccuracy of ±0.4°C (3σ) from- 40 to 125°C. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 222–223. [Google Scholar]
- Law, M.K.; Bermak, A. A 405-nW CMOS temperature sensor based on linear MOS operation. IEEE Trans. Circuits Syst. II Express Briefs 2009, 56, 891–895. [Google Scholar] [CrossRef]
- Ji, Y.; Jeon, C.; Son, H.; Kim, B.; Park, H.J.; Sim, J.Y. 5.8 A 9.3 nW all-in-one bandgap voltage and current reference circuit. In Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 100–101. [Google Scholar]
- Salvia, J.; Lajevardi, P.; Hekmat, M.; Murmann, B. A 56MΩ cmos tia for mems applications. In Proceedings of the 2009 IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 13–16 September 2009; pp. 199–202. [Google Scholar]
- Hu, J.; Kim, Y.B.; Ayers, J. A low power 100MΩ CMOS front-end transimpedance amplifier for biosensing applications. In Proceedings of the 2010 53rd IEEE International Midwest Symposium on Circuits and Systems, Seattle, WA, USA, 1–4 August 2010; pp. 541–544. [Google Scholar]
- Olgun, U.; Chen, C.C.; Volakis, J.L. Design of an efficient ambient WiFi energy harvesting system. IET Microw. Antennas Propag. 2012, 6, 1200–1206. [Google Scholar] [CrossRef]
- Gilbert, J.M.; Balouchi, F. Comparison of energy harvesting systems for wireless sensor networks. Int. J. Autom. Comput. 2008, 5, 334–347. [Google Scholar] [CrossRef]
- Bito, J.; Hester, J.G.; Tentzeris, M.M. Ambient RF energy harvesting from a two-way talk radio for flexible wearable wireless sensor devices utilizing inkjet printing technologies. IEEE Trans. Microw. Theory Tech. 2015, 63, 4533–4543. [Google Scholar] [CrossRef]
- Lin, T.H.; Bito, J.; Hester, J.G.; Kimionis, J.; Bahr, R.A.; Tentzeris, M.M. On-body long-range wireless backscattering sensing system using inkjet-/3-D-printed flexible ambient RF energy harvesters capable of simultaneous DC and harmonics generation. IEEE Trans. Microw. Theory Tech. 2017, 65, 5389–5400. [Google Scholar] [CrossRef]
- Kimionis, J.; Isakov, M.; Koh, B.S.; Georgiadis, A.; Tentzeris, M.M. 3D-printed origami packaging with inkjet-printed antennas for RF harvesting sensors. IEEE Trans. Microw. Theory Tech. 2015, 63, 4521–4532. [Google Scholar] [CrossRef]
- Lin, T.H.; Bahr, R.; Tentzeris, M.M.; Raj, P.M.; Sundaram, V.; Tummala, R. Novel 3D-/inkjet-printed flexible on-package antennas, packaging structures, and modules for broadband 5G applications. In Proceedings of the 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 29 May–1 June 2018; pp. 214–220. [Google Scholar]
- Tehrani, B.K.; Bahr, R.A.; Su, W.; Cook, B.S.; Tentzeris, M.M. E-band characterization of 3D-printed dielectrics for fully-printed millimeter-wave wireless system packaging. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 1756–1759. [Google Scholar]
- Lin, T.H.; Daskalakis, S.N.; Georgiadis, A.; Tentzeris, M.M. Achieving fully autonomous system-on-package designs: An embedded-on-package 5G energy harvester within 3D printed multilayer flexible packaging structures. In Proceedings of the 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2–7 June 2019; pp. 1375–1378. [Google Scholar]
- Huo, Y.; Dong, X.; Xu, W. 5G cellular user equipment: From theory to practical hardware design. IEEE Access 2017, 5, 13992–14010. [Google Scholar] [CrossRef]
- Paradiso, J.A.; Starner, T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput. 2005, 4, 18–27. [Google Scholar] [CrossRef]
- Eid, A.; Hester, J.G.; Costantine, J.; Tawk, Y.; Ramadan, A.H.; Tentzeris, M.M. A compact source–load agnostic flexible rectenna topology for IoT devices. IEEE Trans. Antennas Propag. 2019, 68, 2621–2629. [Google Scholar] [CrossRef]
- Leonov, V.; Torfs, T.; Van Hoof, C.; Vullers, R.J. Smart wireless sensors integrated in clothing: An electrocardiography system in a shirt powered using human body heat. Sens. Transducers 2009, 107, 165. [Google Scholar]
- Paracha, K.N.; Rahim, S.K.A.; Soh, P.J.; Khalily, M. Wearable antennas: A review of materials, structures, and innovative features for autonomous communication and sensing. IEEE Access 2019, 7, 56694–56712. [Google Scholar] [CrossRef]
- Mohamadzade, B.; Hashmi, R.M.; Simorangkir, R.B.; Gharaei, R.; Ur Rehman, S.; Abbasi, Q.H. Recent advances in fabrication methods for flexible antennas in wearable devices: State of the art. Sensors 2019, 19, 2312. [Google Scholar] [CrossRef]
- Naresh, B.; Singh, V.K.; Bhargavi, V. 4.65 GHz wearable rectenna for low power wireless applications. In Proceedings of the 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 22–24 February 2017; pp. 1–5. [Google Scholar]
- Wagih, M.; Hilton, G.S.; Weddell, A.S.; Beeby, S. Dual-band dual-mode textile antenna/rectenna for simultaneous wireless information and power transfer (SWIPT). IEEE Trans. Antennas Propag. 2021, 69, 6322–6332. [Google Scholar] [CrossRef]
- Dini, M.; Filippi, M.; Costanzo, A.; Romani, A.; Tartagni, M.; Del Prete, M.; Masotti, D. A fully-autonomous integrated RF energy harvesting system for wearable applications. In Proceedings of the 2013 European Microwave Conference, Nuremberg, Germany, 6–10 October 2013; pp. 987–990. [Google Scholar]
- Vital, D.; Bhardwaj, S.; Volakis, J.L. Textile-based large area RF-power harvesting system for wearable applications. IEEE Trans. Antennas Propag. 2019, 68, 2323–2331. [Google Scholar] [CrossRef]
- Lopez-Garde, J.M.; Del-Rio-Ruiz, R.; Legarda, J.; Rogier, H. 2× 2 Textile Rectenna Array with Electromagnetically Coupled Microstrip Patch Antennas in the 2.4 GHz WiFi Band. Electronics 2021, 10, 1447. [Google Scholar] [CrossRef]
- Estrada, J.A.; Kwiatkowski, E.; López-Yela, A.; Borgoñós-García, M.; Segovia-Vargas, D.; Barton, T.; Popović, Z. RF-harvesting tightly coupled rectenna array tee-shirt with greater than octave bandwidth. IEEE Trans. Microw. Theory Tech. 2020, 68, 3908–3919. [Google Scholar] [CrossRef]
- Zhang, X.; Grajal, J.; Vazquez-Roy, J.L.; Radhakrishna, U.; Wang, X.; Chern, W.; Zhou, L.; Lin, Y.; Shen, P.C.; Ji, X.; et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 2019, 566, 368–372. [Google Scholar] [CrossRef]
- Fang, B.; Carpentieri, M.; Louis, S.; Tiberkevich, V.; Slavin, A.; Krivorotov, I.N.; Tomasello, R.; Giordano, A.; Jiang, H.; Cai, J.; et al. Experimental demonstration of spintronic broadband microwave detectors and their capability for powering nanodevices. Phys. Rev. Appl. 2019, 11, 014022. [Google Scholar] [CrossRef]
- Hemour, S.; Zhao, Y.; Lorenz, C.H.P.; Houssameddine, D.; Gui, Y.; Hu, C.M.; Wu, K. Towards low-power high-efficiency RF and microwave energy harvesting. IEEE Trans. Microw. Theory Tech. 2014, 62, 965–976. [Google Scholar] [CrossRef]
- Palazzi, V.; Hester, J.; Bito, J.; Alimenti, F.; Kalialakis, C.; Collado, A.; Mezzanotte, P.; Georgiadis, A.; Roselli, L.; Tentzeris, M.M. A novel ultra-lightweight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands. IEEE Trans. Microw. Theory Tech. 2017, 66, 366–379. [Google Scholar] [CrossRef]
- Vuong, T.P.; Verdier, J.; Allard, B.; Benech, P.; Ngan Bu, D.H. Design and measurement of 3D flexible antenna diversity for ambient RF energy scavenging in indoor scenarios. IEEE Access 2019, 7, 17033–17044. [Google Scholar]
- Chandravanshi, S.; Katare, K.K.; Akhtar, M.J. A flexible dual-band rectenna with full azimuth coverage. IEEE Access 2021, 9, 27476–27484. [Google Scholar] [CrossRef]
- El Badawe, M.; Almoneef, T.S.; Ramahi, O.M. A metasurface for conversion of electromagnetic radiation to DC. AIP Adv. 2017, 7, 035112. [Google Scholar] [CrossRef]
- Glybovski, S.B.; Tretyakov, S.A.; Belov, P.A.; Kivshar, Y.S.; Simovski, C.R. Metasurfaces: From microwaves to visible. Phys. Rep. 2016, 634, 1–72. [Google Scholar] [CrossRef]
- Lam, K.Y.; Luk, K.M.; Lee, K.F.; Wong, H.; Ng, K.B. Small circularly polarized U-slot wideband patch antenna. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 87–90. [Google Scholar] [CrossRef]
- He, W.; Jin, R.; Geng, J. E-Shape patch with wideband and circular polarization for millimeter-wave communication. IEEE Trans. Antennas Propag. 2008, 56, 893–895. [Google Scholar] [CrossRef]
- Lin, W.; Wong, H. Wideband circular polarization reconfigurable antenna. IEEE Trans. Antennas Propag. 2015, 63, 5938–5944. [Google Scholar] [CrossRef]
- Song, C.; Huang, Y.; Zhou, J.; Carter, P.; Yuan, S.; Xu, Q.; Fei, Z. Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting. IEEE Trans. Ind. Electron. 2016, 64, 3950–3961. [Google Scholar] [CrossRef]
- Prokopenko, O.; Krivorotov, I.; Bankowski, E.; Meitzler, T.; Jaroch, S.; Tiberkevich, V.; Slavin, A. Spin-torque microwave detector with out-of-plane precessing magnetic moment. J. Appl. Phys. 2012, 111, 123904. [Google Scholar] [CrossRef]
- Noghabaei, S.M.; Radin, R.L.; Sawan, M. Efficient Dual-band Ultra-Low-Power RF Energy Harvesting Front-End for Wearable Devices. In Proceedings of the 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), Windsor, ON, Canada, 5–8 August 2018; pp. 444–447. [Google Scholar]
- Abbasizadeh, H.; Hejazi, A.; Samadpoor Rikan, B.; Kim, S.Y.; Bae, J.; Lee, J.M.; Moon, J.H.; Park, J.J.; Pu, Y.G.; Hwang, K.C.; et al. A high-efficiency and wide-input range RF energy harvester using multiple rectenna and adaptive matching. Energies 2020, 13, 1023. [Google Scholar] [CrossRef]
- Wagih, M.; Cetinkaya, O.; Zaghari, B.; Weddell, A.S.; Beeby, S. Real-world performance of sub-1 GHz and 2.4 GHz textile antennas for RF-powered body area networks. IEEE Access 2020, 8, 133746–133756. [Google Scholar] [CrossRef]
- Elwi, T.A. A further realization of a flexible metamaterial-based antenna on nickel oxide polymerized palm fiber substrates for RF energy harvesting. Wirel. Pers. Commun. 2020, 115, 1623–1634. [Google Scholar] [CrossRef]
- Agrawal, D.R.; Tanabe, Y.; Weng, D.; Ma, A.; Hsu, S.; Liao, S.Y.; Zhen, Z.; Zhu, Z.Y.; Sun, C.; Dong, Z.; et al. Conformal phased surfaces for wireless powering of bioelectronic microdevices. Nat. Biomed. Eng. 2017, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Le-Huu, H.; Seo, C. Bipolar spiral midfield wireless power transfer for cardiac implants application. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1631–1635. [Google Scholar] [CrossRef]
- Moon, S.; Kim, B.C.; Cho, S.Y.; Ahn, C.H.; Moon, G.W. Analysis and design of a wireless power transfer system with an intermediate coil for high efficiency. IEEE Trans. Ind. Electron. 2014, 61, 5861–5870. [Google Scholar] [CrossRef]
- RamRakhyani, A.K.; Mirabbasi, S.; Chiao, M. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 2010, 5, 48–63. [Google Scholar] [CrossRef]
- Ahn, D.; Hong, S. Wireless power transmission with self-regulated output voltage for biomedical implant. IEEE Trans. Ind. Electron. 2013, 61, 2225–2235. [Google Scholar] [CrossRef]
- Wu, P.; Bai, F.; Xue, Q.; Liu, X.; Hui, S.R. Use of frequency-selective surface for suppressing radio-frequency interference from wireless charging pads. IEEE Trans. Ind. Electron. 2013, 61, 3969–3977. [Google Scholar] [CrossRef]
- Xue, R.F.; Cheng, K.W.; Je, M. High-efficiency wireless power transfer for biomedical implants by optimal resonant load transformation. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 60, 867–874. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, H.; Geyi, W. Maximum wireless power transfer to the implantable device in the radiative near field. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1780–1783. [Google Scholar] [CrossRef]
- DeLong, B.J.; Kiourti, A.; Volakis, J.L. A radiating near-field patch rectenna for wireless power transfer to medical implants at 2.4 GHz. IEEE J. Electromagn. RF Microw. Med. Biol. 2018, 2, 64–69. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Yoo, H. Radiative near-field wireless power transfer to scalp-implantable biotelemetric device. IEEE Trans. Microw. Theory Tech. 2020, 68, 2944–2953. [Google Scholar] [CrossRef]
- Shaw, T.; Mitra, D. Metasurface-based radiative near-field wireless power transfer system for implantable medical devices. IET Microw. Antennas Propag. 2019, 13, 1974–1982. [Google Scholar] [CrossRef]
- Lyu, H.; John, M.; Burkland, D.; Greet, B.; Post, A.; Babakhani, A.; Razavi, M. Synchronized biventricular heart pacing in a closed-chest porcine model based on wirelessly powered leadless pacemakers. Sci. Rep. 2020, 10, 1–9. [Google Scholar]
- Kim, J.; Kim, H.; Kim, D.; Park, H.J.; Ban, K.; Ahn, S.; Park, S.M. A wireless power transfer based implantable ECG monitoring device. Energies 2020, 13, 905. [Google Scholar] [CrossRef]
- Bashirullah, R. Wireless implants. IEEE Microw. Mag. 2010, 11, S14–S23. [Google Scholar] [CrossRef]
- Sodagar, A.M.; Wise, K.D.; Najafi, K. A wireless implantable microsystem for multichannel neural recording. IEEE Trans. Microw. Theory Tech. 2009, 57, 2565–2573. [Google Scholar] [CrossRef]
- Jegadeesan, R.; Agarwal, K.; Guo, Y.X.; Yen, S.C.; Thakor, N.V. Wireless power delivery to flexible subcutaneous implants using capacitive coupling. IEEE Trans. Microw. Theory Tech. 2016, 65, 280–292. [Google Scholar] [CrossRef]
- Agarwal, K.; Jegadeesan, R.; Guo, Y.X.; Thakor, N.V. Wireless power transfer strategies for implantable bioelectronics. IEEE Rev. Biomed. Eng. 2017, 10, 136–161. [Google Scholar] [CrossRef]
- Poon, A.S.; O’Driscoll, S.; Meng, T.H. Optimal frequency for wireless power transmission into dispersive tissue. IEEE Trans. Antennas Propag. 2010, 58, 1739–1750. [Google Scholar] [CrossRef]
- Nguyen, N.; Ha-Van, N.; Seo, C. Midfield wireless power transfer for deep-tissue biomedical implants. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2270–2274. [Google Scholar] [CrossRef]
- Kim, S.; Ho, J.S.; Poon, A.S. Wireless power transfer to miniature implants: Transmitter optimization. IEEE Trans. Antennas Propag. 2012, 60, 4838–4845. [Google Scholar] [CrossRef]
- Kim, S.; Poon, A.S. Optimal transmit dimension for wireless powering of miniature implants. In Proceedings of the 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, USA, 3–8 July 2011; pp. 408–411. [Google Scholar]
- Ma, A.; Poon, A.S. Midfield wireless power transfer for bioelectronics. IEEE Circuits Syst. Mag. 2015, 15, 54–60. [Google Scholar] [CrossRef]
- Kim, S.; Ho, J.S.; Poon, A.S. Midfield wireless powering of subwavelength autonomous devices. Phys. Rev. Lett. 2013, 110, 203905. [Google Scholar] [CrossRef]
- Ho, J.S.; Yeh, A.J.; Neofytou, E.; Kim, S.; Tanabe, Y.; Patlolla, B.; Beygui, R.E.; Poon, A.S. Wireless power transfer to deep-tissue microimplants. Proc. Natl. Acad. Sci. USA 2014, 111, 7974–7979. [Google Scholar] [CrossRef]
- Das, R.; Yoo, H. A multiband antenna associating wireless monitoring and nonleaky wireless power transfer system for biomedical implants. IEEE Trans. Microw. Theory Tech. 2017, 65, 2485–2495. [Google Scholar] [CrossRef]
- Vidal, N.; Curto, S.; Lopez-Villegas, J.M.; Sieiro, J.; Ramos, F.M. Detuning study of implantable antennas inside the human body. Prog. Electromagn. Res. 2012, 124, 265–283. [Google Scholar] [CrossRef]
- Le, G.; Nguyen, N.; Au, N.D.; Seo, C. A Broadband High-Efficiency Rectifier for Mid-Field Wireless Power Transfer. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 913–916. [Google Scholar] [CrossRef]
- Abdulfattah, A.N.; Tsimenidis, C.C.; Al-Jewad, B.Z.; Yakovlev, A. Performance analysis of MICS-based RF wireless power transfer system for implantable medical devices. IEEE Access 2019, 7, 11775–11784. [Google Scholar] [CrossRef]
- Thotahewa, K.M.S.; Redouté, J.M.; Yuce, M.R. Ultra Wideband Wireless Body Area Networks; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Liu, C.; Guo, Y.X.; Sun, H.; Xiao, S. Design and safety considerations of an implantable rectenna for far-field wireless power transfer. IEEE Trans. Antennas Propag. 2014, 62, 5798–5806. [Google Scholar] [CrossRef]
- Park, S.I.; Brenner, D.S.; Shin, G.; Morgan, C.D.; Copits, B.A.; Chung, H.U.; Pullen, M.Y.; Noh, K.N.; Davidson, S.; Oh, S.J.; et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 2015, 33, 1280–1286. [Google Scholar] [CrossRef] [PubMed]
- Thotahewa, K.M.; Redouté, J.M.; Yuce, M.R. SAR, SA, and temperature variation in the human head caused by IR-UWB implants operating at 4 GHz. IEEE Trans. Microw. Theory Tech. 2013, 61, 2161–2169. [Google Scholar] [CrossRef]
- Bercich, R.A.; Duffy, D.R.; Irazoqui, P.P. Far-field RF powering of implantable devices: Safety considerations. IEEE Trans. Biomed. Eng. 2013, 60, 2107–2112. [Google Scholar] [CrossRef]
- Marnat, L.; Ouda, M.; Arsalan, M.; Salama, K.; Shamim, A. On-chip implantable antennas for wireless power and data transfer in a glaucoma-monitoring SoC. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1671–1674. [Google Scholar] [CrossRef]
- Huang, F.J.; Lee, C.M.; Chang, C.L.; Chen, L.K.; Yo, T.C.; Luo, C.H. Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication. IEEE Trans. Antennas Propag. 2011, 59, 2646–2653. [Google Scholar] [CrossRef]
- Campi, T.; Cruciani, S.; Maradei, F.; Feliziani, M. Innovative Wireless Charging System for Implantable Capsule Robots. IEEE Trans. Electromagn. Compat. 2021, 63, 1726–1734. [Google Scholar] [CrossRef]
- Montgomery, K.L.; Yeh, A.J.; Ho, J.S.; Tsao, V.; Mohan Iyer, S.; Grosenick, L.; Ferenczi, E.A.; Tanabe, Y.; Deisseroth, K.; Delp, S.L.; et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 2015, 12, 969–974. [Google Scholar] [CrossRef]
- Kod, M.; Zhou, J.; Huang, Y.; Hussein, M.; Sohrab, A.P.; Song, C. An approach to improve the misalignment and wireless power transfer into biomedical implants using meandered wearable loop antenna. Wirel. Power Transf. 2021, 2021. [Google Scholar] [CrossRef]
- Chen, W.C.; Lee, C.W.; Kiourti, A.; Volakis, J.L. A multi-channel passive brain implant for wireless neuropotential monitoring. IEEE J. Electromagn. RF Microw. Med. Biol. 2018, 2, 262–269. [Google Scholar] [CrossRef]
- Barbruni, G.L.; Ros, P.M.; Demarchi, D.; Carrara, S.; Ghezzi, D. Miniaturised wireless power transfer systems for neurostimulation: A review. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 1160–1178. [Google Scholar] [CrossRef]
- Monti, G.; Masotti, D.; Paolini, G.; Corchia, L.; Costanzo, A.; Dionigi, M.; Mastri, F.; Mongiardo, M.; Sorrentino, R.; Tarricone, L. EMC and EMI issues of WPT systems for wearable and implantable devices. IEEE Electromagn. Compat. Mag. 2018, 7, 67–77. [Google Scholar] [CrossRef]
- Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Wireless networks with RF energy harvesting: A contemporary survey. IEEE Commun. Surv. Tutor. 2014, 17, 757–789. [Google Scholar] [CrossRef]
- Kyriakou, A.; Christ, A.; Neufeld, E.; Kuster, N. Local tissue temperature increase of a generic implant compared to the basic restrictions defined in safety guidelines. Bioelectromagnetics 2012, 33, 366–374. [Google Scholar] [CrossRef]
- Christ, A.; Douglas, M.; Nadakuduti, J.; Kuster, N. Assessing human exposure to electromagnetic fields from wireless power transmission systems. Proc. IEEE 2013, 101, 1482–1493. [Google Scholar] [CrossRef]
- Kuster, N.; Balzano, Q. Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz. IEEE Trans. Veh. Technol. 1992, 41, 17–23. [Google Scholar] [CrossRef]
- Christ, A.; Klingenbock, A.; Samaras, T.; Goiceanu, C.; Kuster, N. The dependence of electromagnetic far-field absorption on body tissue composition in the frequency range from 300 MHz to 6 GHz. IEEE Trans. Microw. Theory Tech. 2006, 54, 2188–2195. [Google Scholar] [CrossRef]
- Bocan, K.N.; Mickle, M.H.; Sejdić, E. Multi-disciplinary challenges in tissue modeling for wireless electromagnetic powering: A review. IEEE Sens, J. 2017, 17, 6498–6509. [Google Scholar] [CrossRef]
- Gabriel, C.; Gabriel, S.; Corthout, Y. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 1996, 41, 2231. [Google Scholar] [CrossRef]
- Paulides, M.M.; Verduijn, G.M.; Van Holthe, N. Status quo and directions in deep head and neck hyperthermia. Radiat. Oncol. 2016, 11, 1–14. [Google Scholar] [CrossRef]
- Wang, J.; Lim, E.; Leach, M.; Wang, Z.; Man, K. Review of SAR Measurement Methods in Relation to Wearable Devices. Eng. Lett. 2016, 24. [Google Scholar]
- Kothari, M.; Chui, C. Hermetic Seal and Method to Create the Same. U.S. Patent 6,589,625, 8 July 2003. [Google Scholar]
- Byers, C.L.; Beazell, J.W.; Schulman, J.H.; Rostami, A. Hermetically Sealed Ceramic and Metal Package for Electronic Devices Implantable in Living Bodies. U.S. Patent 4,991,582, 12 February 1991. [Google Scholar]
- Sun, K.; Fan, R.; Zhang, X.; Zhang, Z.; Shi, Z.; Wang, N.; Xie, P.; Wang, Z.; Fan, G.; Liu, H.; et al. Correction: An overview of metamaterials and their achievements in wireless power transfer. J. Mater. Chem. C 2018, 6, 4328. [Google Scholar] [CrossRef]
Features | Resonant Coupling | Inductive Coupling | Far-Field Transfer |
---|---|---|---|
Field | Resonance | Magnetic method | Electromagnetic |
Scheme | Resonator | Coil | Antenna |
Efficiency | High | High | Low to high |
Distance | Medium | Short | Short to long |
Frequency | KHz to MHz | KHz to MHz | GHz |
Power | High | High | Low to high |
Typical load | Fixed impedance | Varying impedance | Fixed impedance |
Regulation | Under discussion | Under discussion | Radio wave |
Pros | Medium efficiency in a short distance | High efficiency | Long distance |
Cons | Difficulties in preserving high Q | Very short distance | Low efficiency and safety issues |
Reference | Antenna Type | Size | Substrate | Gain (dBi) | Frequency (GHz) | SAR (1 g Average) W/Kg | PCE (%) |
---|---|---|---|---|---|---|---|
[83] | Implantable dual-band miniaturized circular antenna | 10.8 mm | Rogers RO 3210 | −23.2 | 0.42–0.91 | 0.36 | 58 |
[94] | Implantable slot antenna array | 30 × 30 mm | Rogers 3010 | −26 | 0.915 | 175 | 50 |
[95] | Silicon Carbide implantable antenna | 4.5 × 4.5 mm | Semi insulating (4H-SiC) | —- | 10 | —— | 47.4 |
[96] | Quad-Band Implantable Antenna | 8.43 mm | RO3010 | –34, –29.6, –28.2, –22.4 | 0.403, 0.915, 0.147, 2.4 | 0.87 | 0.67 |
[97] | Broadband Implantable Antenna | 91.44 mm | Rogers 6010 | –32, –34 | 0.72–1.504 | 921 | —— |
[98] | Compacted Conformal Implantable Antenna | 48.98 mm | Rogers ULTRALAM | −30.8, −19.7, −18.7 | 0.402, 0.915, 1.2 | 293.7 | —— |
[99] | Broadband Substrate-Independent Textile Wearable Antenna | 0.312 × 0.312 | Felt and Polycotton | 2.2 | 0.9 | 1.52 | 40 |
[100] | A circular microstrip patch wearable antenna | 42.92 × 42.92 mm | Duroid 6010LM | —— | 2.45 | — | 25.5 |
[101] | Wearable Bandenna | 35 mm (outer radius) | silicone | 5 | 2.45 | —— | —— |
[102] | Folded Dipole Wearable Antenna | 0.212 × 0.212 | Kapton | −0.3 | 0.94 | —— | 78.5 |
Reference | Biomedical Device | Size | Power Consumption | Application |
---|---|---|---|---|
[109] | Pulse oximeter | 38.69 cm | 294 mW | Measures the oxygen saturation level |
[109] | Hearing aid | 2.45 cm | 1.82 mW | Amplifies the sound for the patient with hearing loss |
[110] | Cochlear implant | 9.58 × 9.23 mm | 100–2000 W | Stimulates the cochlear nerve electrically |
[109] | Pacemaker IC | 4.9 cm | 0.28 mW | Monitors heart rate |
[111] | Drug pump for ophthalmic use | 9.9 × 7.7 × 1.8 mm | 400 W | Controls drug delivery |
[112] | Neural activity monitoring recorder | 3 × 3.5 mm | 1–10 mW | Records brain activities |
[109] | Combo insulin pump | 97.61 cm | 15 mW | Delivers insulin using an insulin pump while also monitoring blood glucose levels and giving bolus instructions using a blood glucose meter |
[113] | Wireless intraocular pressure monitor | 0.5 × 1.5 × 2 mm | 3.65 nW | Frequent measurement of intraocular pressure |
[114] | Health monitoring sensor on wristband | —— | 0.83 mW | Monitors chronic respiratory disease |
[109] | Wireless EKG system | 40.13 cm | 60 mW | Monitors and records vital signs and cardiac information |
[115] | Electrocardiogram amplifier | —— | 2.76 W | Transforms the weak electrical signals from the heart into signals that can be transmitted to a monitoring system. |
[114] | Electronic-nose sensor system | —— | 250 W | Connected to a pattern-recognition system that responds to odors passing over it |
[114] | Spirometer | 6 × 6 mm | 0.01 mW | Measures FEV1, PEF, and FVC |
[116] | Cardiac activity sensing | 6 mm | 0.3 W | Monitors vital signs |
[117] | Retinal prostheses | Diameter = 3mm Pixel size = 25 M | 250 mV | Stimulates the retina |
[114] | ECG chest patch | 84 × 39 × 8.3 mm | 0.96 mW | Measures electrocardiogram ECG, skin impedance, photoplethysmography (PPG), motion, and acoustic signals |
Reference | Wearable Device | Distance From the Source (m) | Frequency (GHz) | Input Power (dBm) | Harvested Voltage (V) | Max PCE (%) |
---|---|---|---|---|---|---|
[62] | Wearable rectenna array | 1.5 | 2.45 | −40-0 | 1.05 | —— |
[144] | Fully-autonomous integrated RFEH system | 1 | 0.9, 1.8, 2.45 | −15 | 3 | —— |
[161] | Dual-band front-end RF energy harvester | —— | 0.915, 1.8 | −33 | 1 | 44 |
[130] | Wearable RFEH from a two-way talk radio | 0.07 | 0.464 | 17.185 | 17.87 | 82.5 |
[162] | RF energy harvester system to charge wearable devices | 0.65 | 5.2 | 20 | 6.1 | 67 |
[63] | Textile rectenna for wearable power harvesting | 1.2 | 0.82 | −20 | 1 | 41.8 |
[163] | Sub-1 GHz wearable textile rectenna | 1.8 | 0.915 | 10 | 3.2 | 38 |
[61] | Single-thread RFEH wearable rectenna | —— | 0.915 | 0 | 1.8 | 55 |
[143] | Dual-polarized wearable rectenna | —— | 2.4 | 2 | 4.2 | 74 |
[164] | Fixable metamaterial-based RF energy harvester | —— | 5.8 | 12 | 0.00298 | 98 |
Reference | Implantable Device | Method | Test Model | Size | Frequency (GHz) | Depth | Transfer Distance | Output Power | PTE (%) |
---|---|---|---|---|---|---|---|---|---|
[200] | Wireless charging system for an implanted capsule robot | Near field | Human torso | Diameter: 1 cm Length: 2 cm | 0.0003 | —— | —— | 1 W | 10 |
[84] | A Dual-Band Implantable Rectenna | Near field | Minced Pork | 16 × 14 × 1.27 mm | 0.915 | 1 | 50 cm | 25 W | 0.006 |
[201] | Implantable wireless optogenetic device | Near field | Mouse tissue | 10 mm | 1.5 | 3 | —— | 15.7 mW | 0.5 |
[202] | Implantable loop antennas | Near field | Minced pork | 20 × 10.5 mm | 0.433 | 3 | —— | 1 mW | 0.1 |
[85] | WPT system for multipurpose biomedical implants | Mid field | Minced pork | 9.4 mm | 1.47 | 5.5 | 60 mm | 10.7 mW | 1.07 |
[165] | Bioelectronic microdevices | Mid field | Porcine animal | 12 mm | 1.6 | 4 | 4.5 | 0.45 mW | 0.06 |
[191] | Broadband high-efficiency rectifier | Mid field | Porcine animal | 16 × 11 mm | 1.5 | 5.5 | 55 mm | 0.9 mW | 0.56 |
[183] | Midfield WPT for Deep-Tissue Biomedical Implants | Mid field | Minced pork | 93.6 mm | 1.5 | 4.5 | 55 mm | 5.6 mW | 0.56 |
[203] | Multichannel passive neurosensing system | Mid field | Pig Skin | 1632 mm | 2.4 | 0.25 | 2.5 mm | 0.6 mW | 15 |
[194] | Implantable rectenna | Far field | Minced pork | 4 × 8 mm | 2.45 | 0.3 | 50 mm | 1 W | 0.007 |
[195] | Implantable miniaturized optoelectronic systems | Far field | Mouse tissue | 2 mm | 2.34 | 0.5 | —— | 0.1 mW | —— |
[65] | Epidermal RF power harvester | Far field | Skin | 2160 mm | 1 | —— | 1.5 m | 32 mW | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yahya Alkhalaf, H.; Yazed Ahmad, M.; Ramiah, H. Self-Sustainable Biomedical Devices Powered by RF Energy: A Review. Sensors 2022, 22, 6371. https://doi.org/10.3390/s22176371
Yahya Alkhalaf H, Yazed Ahmad M, Ramiah H. Self-Sustainable Biomedical Devices Powered by RF Energy: A Review. Sensors. 2022; 22(17):6371. https://doi.org/10.3390/s22176371
Chicago/Turabian StyleYahya Alkhalaf, Hussein, Mohd Yazed Ahmad, and Harikrishnan Ramiah. 2022. "Self-Sustainable Biomedical Devices Powered by RF Energy: A Review" Sensors 22, no. 17: 6371. https://doi.org/10.3390/s22176371
APA StyleYahya Alkhalaf, H., Yazed Ahmad, M., & Ramiah, H. (2022). Self-Sustainable Biomedical Devices Powered by RF Energy: A Review. Sensors, 22(17), 6371. https://doi.org/10.3390/s22176371