Aurora Image Classification with Deep Metric Learning
Abstract
:1. Introduction
- We trained a convolutional neural network using deep metric learning.
- We encoded images into feature vectors using the pre-trained CNN.
- We classified the feature vectors obtained in 2. We encoded images into feature vectors using the pre-trained CNN. In this study, we used the ridge regression classifier and the classification using Mahalanobis distance.
2. Related Works
2.1. Aurora Image Classification with Deep Learning
2.2. Deep Metric Learning
3. Proposed Method
4. Experiments
4.1. Data Splitting and Evaluation Method
4.2. Details of Model and Model Training Methods
4.3. Data Preprocessing
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mikko, S.; Noora, P. Numeric image features for detection of aurora. IEEE Geosci. Remote Sens. Lett. 2012, 9, 176–179. [Google Scholar] [CrossRef]
- Qiuju, Y.; Jimin, Z.; Zejun, H.; Heng, Z. Auroral sequence representation and classification using hidden Markov models. IEEE Trans. Geosci. Remote Sens. 2012, 12, 5049–5060. [Google Scholar]
- Andreas, K.; Kristoffer, W.; Derek, M.; Noora, P. Auroral Image Classification With Deep Neural Networks. J. Geophys. Res. Space Phys. 2020, 125, 10. [Google Scholar] [CrossRef]
- Kaiming, H.; Xiangyu, Z.; Shaoqing, R.; Jian, S. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Florian, S.; Dmitry, K.; James, P. FaceNet: A Unified Embedding for Face Recognition and Clustering. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Lasse, B.N.C.; Hannes, N. Automatic classification of auroral images from the Oslo auroral THEMIS (OATH) data set using machine learning. J. Geophys. Res. Space Phys. 2015, 9, 7447–7465. [Google Scholar]
- Syrjäsuo, M.T.; Donovan, E.F. Diurnal auroral occurrence statistics obtained via machine vision. Ann. Geophys. 2004, 22, 1103–1113. [Google Scholar] [CrossRef]
- Syrjäsuo, M.T.; Donovan, E.F. Using relevance feedback in retrieving auroral images. In Proceedings of the 4th IASTED International Conference on Computational Intelligence, Innsbruck, Austria, 16–17 February 2015; Volume 7, pp. 420–425. [Google Scholar]
- Han, B.; Qiu, W. Aurora images classification via features salient coding. J. Xidian Univ. 2013, 30, 180–186. [Google Scholar]
- Han, B.; Yang, C.; Gao, X. Aurora image classification based on LDA combining with saliency information. J. Softw. 2013, 24, 2758–2766. [Google Scholar] [CrossRef]
- Xi, Y.; Xinbo, G.; Bin, S.; Dong, Y. Aurora image search with contextual CNN feature. Neurocomputing 2013, 3, 67–77. [Google Scholar]
- Xi, Y.; Xinbo, G.; Bin, S.; Nannan, W.; Dong, Y. ASI aurora search: An attempt of intelligent image processing for circular fisheye lens. Opt. Express 2018, 1, 7985–8000. [Google Scholar]
- Yanfei, Z.; Richen, Y. Automatic Aurora Image Classification Framework Based on Deep Learning for Occurrence Distribution Analysis: A Case Study of All-Sky Image Data Sets From the Yellow River Station. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027590. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Chuang, N.; Jun, Z.; Qian, W.; Jimin, L. Weakly supervised semantic segmentation for joint key local structure localization and classification of aurora image. IEEE Geosci. Remote Sens. Lett. 2018, 56, 7133–7146. [Google Scholar]
- Qiuju, Y.; Penghui, Z. Representation and Classification of Auroral Images Based on Convolutional Neural Network. IEEE Geosci. Remote Sens. Lett. 2020, 13, 523–534. [Google Scholar]
- Aoi, U.; Mitsuharu, M. Extension of Image Data Using Generative Adversarial Networks and Application to Identification of Aurora. IEEE Geosci. Remote. Sens. Lett. 2021, 18, 1941–1945. [Google Scholar]
- Pascal, S.; Lasse, B.N.C.; Wojciech, M.; Hannes, N. Transfer Learning Aurora Image Classification and Magnetic Disturbance Evaluation. J. Geophys. Res. Space Phys. 2021, 127, e2021JA029683. [Google Scholar] [CrossRef]
- Qiuju, Y.; Yingying, W.; Jie, R. Auroral Image Classification With Very Limited Labeled Data Using Few-Shot Learning. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar]
- Mengyang, Z.; Chorng, H.C.; Wenbin, X.; Zhou, X.; Jinyong, H. Cloud shape classification system based on multi-channel cnn and improved fdm. IEEE Access 2020, 8, 44111–44124. [Google Scholar]
- Bo, J.; Leandro, C.; Nuno, G. Deep Facial Diagnosis: Deep Transfer Learning From Face Recognition to Facial Diagnosis. IEEE Access 2020, 8, 123649–123661. [Google Scholar] [CrossRef]
- Suriya, G.; Blake, W.; Srinadh, B.; Behnam, N.; Nathan, S. Implicit Regularization in Matrix Factorization. arXiv 2017, arXiv:1705.09280. [Google Scholar]
- Qinghe, Z.; Mingqiang, Y.; Jiajie, Y.; Qingrui, Z.; Xinxin, Z. Improvement of Generalization Ability of Deep CNN via Implicit Regularization in Two-Stage Training Process. IEEE Access 2018, 6, 15844–15869. [Google Scholar]
- Elad, H.; Nir, A. Deep metric learning using Triplet network. arXiv 2014, arXiv:1412.6622. [Google Scholar]
- Sohn, K. Improved deep metric learning with multi-class N-pair loss objective. Adv. Neural Inf. Process. Syst. 2016, 29, 1857–1865. [Google Scholar]
- Wang, X.; Han, X.; Huang, W.; Dong, D.; Scott, M.R. Multi-similarity loss with general pair weighting for deep metric learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5022–5030. [Google Scholar]
- Liu, W.; Wen, Y.; Yu, Z.; Li, M.; Raj, B.; Song, L. Sphereface: Deep hypersphere embedding for face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 212–220. [Google Scholar]
- Wang, H.; Wang, Y.; Zhou, Z.; Ji, X.; Gong, D.; Zhou, J.; Li, Z.; Liu, W. Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Lake City, UT, USA, 18–23 June 2018; pp. 5265–5274. [Google Scholar]
- Jiankang, D.; Jia, G.; Niannan, X.; Stefanos, Z. ArcFace: Additive Angular Margin Loss for Deep Face Recognition. arXiv 2018, arXiv:1801.07698. [Google Scholar]
- Scikit-Learn. Available online: https://scikit-learn.org/stable/ (accessed on 26 August 2022).
- Pytorch-Metric-Learning. Available online: https://github.com/KevinMusgrave/pytorch-metric-learning (accessed on 3 February 2022).
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 6105–6114. [Google Scholar]
- Alexey, D.; Lucas, B.; Alexander, K.; Dirk, W.; Xiaohua, Z.; Thomas, U.; Mostafa, D.; Matthias, M.; Georg, H.; Sylvain, G.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
Phase | A Number of Images |
---|---|
Training | 3000 (500 images × 6 classes) |
Validation | 600 (100 images × 6 classes) |
Evaluation | 600 (100 images × 6 classes) |
Parameters | Triplet Margin Loss | ArcFace |
---|---|---|
Epoch | 40 | 50 |
Learning rate | 0.001 | 0.01 |
Dimensions of feature vectors | 16 | 256 |
Batch size | 32 | 64 |
Optimizer | Adam | SGD |
Model | Details | Fold1 | Fold2 | Fold3 | Fold4 | Average | |
---|---|---|---|---|---|---|---|
Model 1 | Backbone | InceptionV4 | 0.85000 | 0.86833 | 0.85500 | 0.85833 | 0.85792 (SD 0.00670) |
Classifier | Ridge Regression | ||||||
Model 2 | Loss Function | Cross Entropy Loss | 0.84667 | 0.87333 | 0.88500 | 0.89333 | 0.87458 (SD 0.01761) |
End to End | ResNet18 | ||||||
Model 3 | Loss Function | Cross Entropy Loss | 0.88833 | 0.91167 | 0.85333 | 0.86000 | 0.87833 (SD 0.02330) |
End to End | ResNet18 | ||||||
Model 4 | Loss Function | Triplet Margin Loss | 0.95333 | 0.96000 | 0.95500 | 0.96500 | 0.95833 (SD 0.00457) |
Backbone | ResNet18 | ||||||
Classifier | Mahalanobis Distance | ||||||
Model 5 | Loss Function | Triplet Margin Loss | 0.95500 | 0.95333 | 0.95667 | 0.95000 | 0.95375 (SD 0.00247) |
Backbone | ResNet18 | ||||||
Classifier | Ridge Regression | ||||||
Model 6 | Loss Function | Triplet Margin Loss | 0.94500 | 0.94833 | 0.94500 | 0.93000 | 0.94208 (SD 0.00711) |
Backbone | ResNet50 | ||||||
Classifier | Mahalanobis Distance | ||||||
Model 7 | Loss Function | Triplet Margin Loss | 0.96167 | 0.95000 | 0.95000 | 0.94500 | 0.95167 (SD 0.00613) |
Backbone | ResNet50 | ||||||
Classifier | Ridge Regression | ||||||
Model 8 | Loss Function | ArcFace | 0.93333 | 0.95000 | 0.95500 | 0.95667 | 0.95250 (SD 0.00923) |
Backbone | ResNet18 | ||||||
Classifier | Mahalanobis Distance | ||||||
Model 9 | Loss Function | ArcFace | 0.95167 | 0.95667 | 0.95500 | 0.96500 | 0.95583 (SD 0.00491) |
Backbone | ResNet18 | ||||||
Classifier | Ridge Regression | ||||||
Model 10 | Loss Function | ArcFace | 0.94167 | 0.95333 | 0.95667 | 0.95167 | 0.95250 (SD 0.00559) |
Backbone | ResNet50 | ||||||
Classifier | Mahalanobis Distance | ||||||
Model 11 | Loss Function | ArcFace | 0.94667 | 0.94167 | 0.94500 | 0.95833 | 0.94583 (SD 0.00628) |
Backbone | ResNet50 | ||||||
Classifier | Ridge Regression |
Estimated Results | |||||||
---|---|---|---|---|---|---|---|
Arc | Diffuse | Discrete | Cloudy | Moon | No Aurora | ||
Class | arc | 83 | 6 | 9 | 0 | 1 | 2 |
Diffuse | 11 | 76 | 7 | 1 | 0 | 6 | |
Discrete | 13 | 8 | 77 | 1 | 1 | 1 | |
Cloudy | 1 | 3 | 2 | 93 | 2 | 1 | |
Moon | 0 | 0 | 1 | 1 | 98 | 0 | |
Noaurora | 4 | 2 | 5 | 0 | 1 | 89 |
Estimated Results | |||||||
---|---|---|---|---|---|---|---|
Arc | Diffuse | Discrete | Cloudy | Moon | No Aurora | ||
Class | arc | 89 | 3 | 3 | 0 | 0 | 0 |
Diffuse | 4 | 93 | 2 | 0 | 0 | 1 | |
Discrete | 6 | 4 | 95 | 0 | 2 | 1 | |
Cloudy | 0 | 0 | 0 | 100 | 0 | 0 | |
Moon | 0 | 0 | 0 | 0 | 98 | 1 | |
Noaurora | 1 | 0 | 0 | 0 | 0 | 97 |
Fold1 | Fold2 | Fold3 | Fold4 | |
---|---|---|---|---|
Accuracy | 0.92933 | 0.93200 | 0.92267 | 0.90267 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Endo, T.; Matsumoto, M. Aurora Image Classification with Deep Metric Learning. Sensors 2022, 22, 6666. https://doi.org/10.3390/s22176666
Endo T, Matsumoto M. Aurora Image Classification with Deep Metric Learning. Sensors. 2022; 22(17):6666. https://doi.org/10.3390/s22176666
Chicago/Turabian StyleEndo, Takeru, and Mitsuharu Matsumoto. 2022. "Aurora Image Classification with Deep Metric Learning" Sensors 22, no. 17: 6666. https://doi.org/10.3390/s22176666
APA StyleEndo, T., & Matsumoto, M. (2022). Aurora Image Classification with Deep Metric Learning. Sensors, 22(17), 6666. https://doi.org/10.3390/s22176666