Characterization of Retronasal Airflow Patterns during Intraoral Fluid Discrimination Using a Low-Cost, Open-Source Biosensing Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Apparatus
2.3. Procedures
2.4. Data Analysis
3. Results
3.1. Behavioral Performance
3.2. Respiration and Deglutition
3.3. Retronasal Airflow
4. Discussion
4.1. System Evaluation
4.2. Physiological and Behavioral Findings
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rozin, P. “Taste-smell confusions” and the duality of the olfactory sense. Percept. Psychophys. 1982, 31, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Small, D.M.; Gerber, J.C.; Mak, Y.E.; Hummel, T. Differential Neural Responses Evoked by Orthonasal versus Retronasal Odorant Perception in Humans. Neuron 2005, 47, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Hummel, T.; Seo, H.-S.; Pellegrino, R.; Heilmann, S. Electro-Olfactograms in Humans in Response to Ortho- and Retronasal Chemosensory Stimulation. Chemosens. Percept. 2017, 10, 114–118. [Google Scholar] [CrossRef]
- Blankenship, M.L.; Grigorova, M.; Katz, D.B.; Maier, J.X. Retronasal Odor Perception Requires Taste Cortex, but Orthonasal Does Not. Curr. Biol. 2019, 29, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Hannum, M.; Stegman, M.A.; Fryer, J.A.; Simons, C.T. Different Olfactory Percepts Evoked by Orthonasal and Retronasal Odorant Delivery. Chem. Senses 2018, 43, 515–521. [Google Scholar] [CrossRef]
- Halpern, B.P. Retronasal olfaction. In The Curated Reference Collection in Neuroscience and Biobehavioral Psychology; King College London: London, UK, 2016; pp. 297–304. [Google Scholar] [CrossRef]
- Shepherd, G.M. Neurogastronomy: How the Brain Creates Flavor and Why It Matters; Columbia University Press: New York, NY, USA, 2011; ISBN 9780231159104. [Google Scholar]
- Mainland, J.; Sobel, N. The Sniff Is Part of the Olfactory Percept. Chem. Senses 2006, 31, 181–196. [Google Scholar] [CrossRef]
- Kepecs, A.; Uchida, N.; Mainen, Z.F. The Sniff as a Unit of Olfactory Processing. Chem. Senses 2006, 31, 167–179. [Google Scholar] [CrossRef]
- Youngentob, S.L.; Mozell, M.M.; Sheehe, P.R.; Hornung, D.E. A quantitative analysis of sniffing strategies in rats performing odor detection tasks. Physiol. Behav. 1987, 41, 59–69. [Google Scholar] [CrossRef]
- Rygg, A.D.; Van Valkenburgh, B.; Craven, B.A. The influence of sniffing on airflow and odorant deposition in the canine nasal cavity. Chem. Sens. 2017, 42, 683–698. [Google Scholar] [CrossRef] [Green Version]
- Adrian, E.D. Olfactory reactions in the brain of the hedgehog. J. Physiol. 1942, 100, 437–459. [Google Scholar] [CrossRef]
- Eeckman, F.H.; Freeman, W.J. Correlations between unit firing and EEG in the rat olfactory system. Brain Res. 1990, 528, 238–244. [Google Scholar] [CrossRef]
- Carey, R.M.; Wachowiak, M. Effect of Sniffing on the Temporal Structure of Mitral/Tufted Cell Output from the Olfactory Bulb. J. Neurosci. 2011, 31, 10615–10626. [Google Scholar] [CrossRef]
- Cury, K.M.; Uchida, N. Robust Odor Coding via Inhalation-Coupled Transient Activity in the Mammalian Olfactory Bulb. Neuron 2010, 68, 570–585. [Google Scholar] [CrossRef]
- Rojas-Lã bano, D.; Frederick, D.E.; Egaã±A, J.I.; Kay, L.M.; Rojas-Líbano, D.; Egaña, J.I. The olfactory bulb theta rhythm follows all frequencies of diaphragmatic respiration in the freely behaving rat. Front. Behav. Neurosci. 2014, 8, 214. [Google Scholar] [CrossRef]
- Burdach, K.J.; Doty, R.L. The effects of mouth movements, swallowing, and spitting on retronasal odor perception. Physiol. Behav. 1987, 41, 353–356. [Google Scholar] [CrossRef]
- Rowe, T.B.; Shepherd, G.M. Role of ortho-retronasal olfaction in mammalian cortical evolution. J. Comp. Neurol. 2016, 524, 471–495. [Google Scholar] [CrossRef]
- Land, D.G. Perspectives on the Effects of Interactions on Flavor Perception: An Overview; American Chemical Society: Washington, DC, USA, 1996; Volume 633, pp. 2–11. [Google Scholar] [CrossRef]
- Tarrant, S.C.; Ellis, R.E.; Flack, F.C.; Selley, W.G. Comparative Review of Techniques for Recording Respiratory Events at Rest and during Deglutition. Dysphagia 1997, 12, 24–38. [Google Scholar] [CrossRef]
- Loret, C. Using sensory properties of food to trigger swallowing: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Rashid, U.; Niazi, I.K.; Signal, N.; Taylor, D. An EEG Experimental Study Evaluating the Performance of Texas Instruments ADS1299. Sensors 2018, 18, 3721. [Google Scholar] [CrossRef]
- Hirst, L.J.; Ford, G.A.; Gibson, G.J.; Wilson, J.A. Swallow-Induced Alterations in Breathing in Normal Older People. Dysphagia 2002, 17, 152–161. [Google Scholar] [CrossRef]
- Selley, W.G.; Flack, F.C.; Ellis, R.E.; Brooks, W.A. The exeter dysphagia assessment technique. Dysphagia 1990, 4, 227–235. [Google Scholar] [CrossRef]
- McKeown, M.J.; Torpey, D.C.; Gehm, W.C. Non-invasive monitoring of functionally distinct muscle activations during swallowing. Clin. Neurophysiol. 2002, 133, 354–366. [Google Scholar] [CrossRef]
- Grubbs, F.E.; Beck, G. Extension of sample sizes and percentage points for significance tests of outlying observations. Technometrics 1972, 14, 847–854. [Google Scholar] [CrossRef]
- Qiu, J.M.; Casey, M.A.; Diamond, S.G. Assessing Feedback Response With a Wearable Electroencephalography System. Front. Hum. Neurosci. 2019, 13, 258. [Google Scholar] [CrossRef]
- Zhu, M.; Chen, J.; Li, H.; Liang, F.; Han, L.; Zhang, Z. Vehicle driver drowsiness detection method using wearable EEG based on convolution neural network. Neural Comput. Appl. 2021, 33, 13965–13980. [Google Scholar] [CrossRef]
- Knecht, M.; Hummel, T. Recording of the human electro-olfactogram. Physiol. Behav. 2004, 83, 13–19. [Google Scholar] [CrossRef]
- Iravani, B.; Arshamian, A.; Ohla, K.; Wilson, D.A.; Lundström, J.N. Non-invasive recording from the human olfactory bulb. Nat. Commun. 2020, 11, 648. [Google Scholar] [CrossRef]
- Sobel, N.; Khan, R.M.; Hartley, C.A.; Sullivan, E.V.; Gabrieli, J.D. Sniffing Longer rather than Stronger to Maintain Olfactory Detection Threshold. Chem. Senses 2000, 25, 1–8. [Google Scholar] [CrossRef]
- Teghtsoonian, R.; Teghtsoonian, M.; Berglund, B.; Berglund, U. Invarance of odor strength with sniff vigor: An ol-factory analogue to size constancy. J. Exp. Psychol. Hum. Percept. Perf. 1978, 4, 144–152. [Google Scholar] [CrossRef]
- Shusterman, R.; Sirotin, Y.B.; Smear, M.C.; Ahmadian, Y.; Rinberg, D. Sniff Invariant Odor Coding. eNeuro 2018, 5, 1–15. [Google Scholar] [CrossRef]
- Yao, F.; Ye, Y.; Zhou, W. Nasal airflow engages central olfactory processing and shapes olfactory percepts. Proc. R. Soc. B Boil. Sci. 2020, 287, 20201772. [Google Scholar] [CrossRef]
- Hodgson, M.; Linforth, R.S.T.; Taylor, A.J. Simultaneous Real-Time Measurements of Mastication, Swallowing, Nasal Airflow, and Aroma Release. J. Agric. Food Chem. 2003, 51, 5052–5057. [Google Scholar] [CrossRef]
- Zoccal, D.B.; Furuya, W.I.; Bassi, M.; Colombari, D.S.A. The nucleus of the solitary tract and the coordination of respiratory and sympathetic activities. Front. Physiol. 2014, 25, 238. [Google Scholar] [CrossRef]
- Ertekin, C.; Aydogdu, I. Neurophysiology of swallowing. Clin. Neurophysiol. 2003, 114, 2226–2244. [Google Scholar] [CrossRef]
- Rolls, E.T. Taste and smell processing in the brain. In Handbook of Clinical Neurology, Smell and Taste, 3rd ed.; Doty, R.L., Ed.; ScienceDirect: Amsterdam, The Netherlands, 2019; Volume 164. [Google Scholar] [CrossRef]
- Escanilla, O.D.; Victor, J.D.; Di Lorenzo, P.M. Odor-taste convergence in the nucleus of the solitary tract of the awake freely licking rat. J. Neurosci. 2015, 35, 6284–6297. [Google Scholar] [CrossRef]
- Ni, R.; Michalski, M.H.; Brown, E.; Doan, N.; Zinter, J.; Ouellette, N.T.; Shepherd, G.M. Optimal directional volatile transport in retronasal olfaction. Proc. Natl. Acad. Sci. USA 2015, 112, 14700–14704. [Google Scholar] [CrossRef]
- Leow, L.; Huckabee, M.-L.; Sharma, S.; Tooley, T. The Influence of Taste on Swallowing Apnea, Oral Preparation Time, and Duration and Amplitude of Submental Muscle Contraction. Chem. Senses 2007, 32, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Chen, V.; Halpern, B.P. Retronasal but Not Oral-Cavity-Only Identification of “Purely Olfactory” Odorants. Chem. Senses 2008, 33, 107–118. [Google Scholar] [CrossRef]
- Stephenson, D.; Halpern, B.P. No Oral-Cavity-Only Discrimination of Purely Olfactory Odorants. Chem. Senses 2009, 34, 121–126. [Google Scholar] [CrossRef]
Deglutition Apnea | Post-Deglutitive Airflow | Response Interval Airflow | |||||||
---|---|---|---|---|---|---|---|---|---|
Stimulus | Duration (s) | Latency (s) | Duration (s) | Peak Rate (Voltage) | Volume (Voltage 2) | Duration (s) | Peak Rate (Voltage) | Volume (Voltage 2) | |
Water | Median | 0.67 | 2.15 | 0.99 | 165.79 | 3647.33 | 1.21 | 213.12 | 3317.86 |
Mean | 0.77 | 2.05 | 0.96 | 163.03 | 3921.63 | 1.24 | 215.48 | 3954.41 | |
S1 | Median | 0.60 * | 1.76 | 1.07 | 172.09 | 3644.65 | 1.60 * | 213.88 | 5092.11 * |
Mean | 0.63 | 1.77 | 1.04 | 175.33 | 4078.26 | 1.81 | 209.98 | 5839.57 | |
S2 | Median | 0.62 * | 1.70 | 0.88 | 177.44 | 2578.91 | 1.84 * | 214.18 | 5976.99 * |
Mean | 0.61 | 1.80 | 1.04 | 177.62 | 3857.45 | 1.98 | 210.53 | 6716.29 | |
Friedman | N | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
χ2 | 12.2 | 4.2 | 0.8 | 4.2 | 0.8 | 16.8 | 1.4 | 12.6 | |
p | 0.002 # | 0.122 | 0.670 | 0.122 | 0.670 | 0.000 # | 0.497 | 0.002 # |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cousens, G.A.; Fotis, M.M.; Bradshaw, C.M.; Ramirez-Alvarado, Y.M.; McKittrick, C.R. Characterization of Retronasal Airflow Patterns during Intraoral Fluid Discrimination Using a Low-Cost, Open-Source Biosensing Platform. Sensors 2022, 22, 6817. https://doi.org/10.3390/s22186817
Cousens GA, Fotis MM, Bradshaw CM, Ramirez-Alvarado YM, McKittrick CR. Characterization of Retronasal Airflow Patterns during Intraoral Fluid Discrimination Using a Low-Cost, Open-Source Biosensing Platform. Sensors. 2022; 22(18):6817. https://doi.org/10.3390/s22186817
Chicago/Turabian StyleCousens, Graham A., Michelle M. Fotis, Christine M. Bradshaw, Yida M. Ramirez-Alvarado, and Christina R. McKittrick. 2022. "Characterization of Retronasal Airflow Patterns during Intraoral Fluid Discrimination Using a Low-Cost, Open-Source Biosensing Platform" Sensors 22, no. 18: 6817. https://doi.org/10.3390/s22186817
APA StyleCousens, G. A., Fotis, M. M., Bradshaw, C. M., Ramirez-Alvarado, Y. M., & McKittrick, C. R. (2022). Characterization of Retronasal Airflow Patterns during Intraoral Fluid Discrimination Using a Low-Cost, Open-Source Biosensing Platform. Sensors, 22(18), 6817. https://doi.org/10.3390/s22186817