Characterization of Biocomposites and Glass Fiber Epoxy Composites Based on Acoustic Emission Signals, Deep Feature Extraction, and Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Feature Extraction
2.2.1. Standard Features
- c1
- Peak amplitude [nm]—burst signal linear peak amplitude.
- c2
- Burst signal rise-time [µs]—elapsed time after the first threshold crossing and until the burst signal maximum amplitude.
- c3
- Burst signal duration [µs]—elapsed time after the first and until the last threshold crossing of a burst signal.
- c4
- Burst signal energy [au].
- c5
- RMS background noise [µV].
- c6
- Counts—number of positive threshold crossings [/].
- c7
- Spectral centroid [Hz].
- c8
- Frequency of the max. amplitude of Fourier transform spectrum [Hz].
- c9
- Frequency of the max. amplitude of continuous wavelet transformation (using the complex Morlet wavelet) [Hz].
- c10
- Partial power of Fourier spectrum between 0 and 75 kHz [/].
- c11
- Partial power of Fourier spectrum between 75 and 150 kHz [/].
- c12
- Partial power of Fourier spectrum between 150 and 300 kHz [/].
- c13
- Partial power of Fourier spectrum between 300 and 475 kHz [/].
2.2.2. Convolutional Autoencoder and Deep Features
- s1
- Number of kernels used in 1st convolutional layers.
- s2
- Number of kernels used in 2nd convolutional and 1st transposed convolutional layers.
- s3
- Number of kernels used in convolutional and transposed convolutional layers of the latent section.
- s4
- Number of neurons in 2nd and 4th FC layers.
- s5
- Number of neurons in the bottleneck (3rd FC) layer. This number also represents the number of extracted deep features per input image.
- s6
- Number of training epochs.
- s7
- The batch size of training samples.
2.3. Machine Learning Methods
- (1)
- Select the most informative extracted AE features;
- (2)
- provide estimation of generalization performance (based on CV).
2.3.1. Discriminant Analysis
2.3.2. Neural Networks
2.3.3. Extreme Learning Machines
2.4. Objectives and Evaluation Criterion
- The evaluation of the predictive importance of extracted classic and deep features.
- The comparative analysis of various ML-based classifiers to construct the discriminative predictors.
- Extraction of classic features (c1, c2,…, c10) from the acquired AE signals.
- Analysis of various CAE configurations and the extraction of deep features (d1,d2,…).
- Initiation of a 5-fold cross-validation loop for the analysis of classifiers:
- i.
- Split the data, consisting of extracted AE features (classic features + deep features), into 5 subsets.
- ii.
- Train each classifier on 4 subsets and test the generalization performance on the remaining 1 subset.
- iii.
- Repeat the procedure through all 5 subsets and average the generalization performance (classification accuracy) over all 5 subsets.
- iv.
- Repeat the CV-based analysis for all applied classifiers: LDA, QDA, NN, and ELM.
- Summarize the results concerning the chosen ML-based predictors and concerning selected AE features.
3. Results
- The results, in terms of CV-based accuracy, are comparable across different CAE configurations, thus confirming the robustness of CAE-based deep feature extraction. The best result (NN, 80.9%) is achieved with the CAE-2 configuration “32-64-20-512-8-100-256”, but all results are very similar and do not differ significantly. The best average result corresponds to the configuration CAE-1 “16-32-14-256-6-100-128”.
- A comparison of machine learning models shows that with more complex nonlinear models (NN and ELM models), higher classification accuracy can be achieved (compared to simple LDA and QDA models). This confirms that the application of nonlinear ML models can be useful in the AE-based characterization of composite materials. The best results are achieved with the NN model, which is a neural network with one hidden layer of four neurons, and the ELM models with one hundred hidden neurons show only slightly lower performance.
- A comparison of separate use of only classic or only deep features shows that only classic features allow better classification compared to only deep features.
- The combination of classic and deep features always significantly improves classification accuracy.
- The selected combined features (using the FFS method) in all the considered models always contain both classic and deep features.
- Often, one of the deep features is the first chosen feature (the most informative feature).
- The order of the selected deep features is different for each CAE configuration because the feature extraction process is “unsupervised” and can result in different solutions.
4. Conclusions
- The classification accuracy of ML-based classifiers is comparable across different CAE configurations, thus confirming the robustness of CAE-based deep feature extraction.
- The combination of both types of features—classic and deep features—always significantly improves classification accuracy, and the selected combined features in all the considered models always contain both classic and deep features.
- Nonlinear models (NN and ELM models) provide higher classification accuracy (compared to the simple LDA model); therefore, the application of nonlinear ML models is useful for the classification of the source material (biocomposite or GFE composite).
- The best classification result (80.9% accuracy of classification of source material) is achieved with an NN classifier, combined features, and CAE-2 configuration “32-64-20-512-8-100-256”.
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Slayton, R.; Spinardi, G. Radical Innovation in Scaling up: Boeing’s Dreamliner and the Challenge of Socio-Technical Transitions. Technovation 2016, 47, 47–58. [Google Scholar] [CrossRef]
- Brøndsted, P.; Lilholt, H.; Lystrup, A. Composite Materials for Wind Power Turbine Blades. Annu. Rev. Mater. Res. 2005, 35, 505–538. [Google Scholar] [CrossRef]
- Alam, P.; Mamalis, D.; Robert, C.; Floreani, C.; Brádaigh, C.M.Ó. The Fatigue of Carbon Fibre Reinforced Plastics—A Review. Compos. Part B Eng. 2019, 166, 555–579. [Google Scholar] [CrossRef]
- Yao, S.S.; Jin, F.L.; Rhee, K.Y.; Hui, D.; Park, S.J. Recent Advances in Carbon-Fiber-Reinforced Thermoplastic Composites: A Review. Compos. Part B Eng. 2018, 142, 241–250. [Google Scholar] [CrossRef]
- Dauguet, M.; Mantaux, O.; Perry, N.; Zhao, Y.F. Recycling of CFRP for High Value Applications: Effect of Sizing Removal and Environmental Analysis of the Super Critical Fluid Solvolysis. Procedia CIRP 2015, 29, 734–739. [Google Scholar] [CrossRef]
- Hanaoka, T.; Ikematsu, H.; Takahashi, S.; Ito, N.; Ijuin, N.; Kawada, H.; Arao, Y.; Kubouchi, M. Recovery of Carbon Fiber from Prepreg Using Nitric Acid and Evaluation of Recycled CFRP. Compos. Part B Eng. 2022, 231, 109560. [Google Scholar] [CrossRef]
- Pantelakis, S.; Tserpes, K. Revolutionizing Aircraft Materials and Processes; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Li, M.; Pu, Y.; Thomas, V.M.; Yoo, C.G.; Ozcan, S.; Deng, Y.; Nelson, K.; Ragauskas, A.J. Recent Advancements of Plant-Based Natural Fiber–Reinforced Composites and Their Applications. Compos. Part B Eng. 2020, 200, 108254. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Jayaraman, K. Flax Fibre and Its Composites—A Review. Compos. Part B Eng. 2014, 56, 296–317. [Google Scholar] [CrossRef]
- Sabău, E.; Udroiu, R.; Bere, P.; Buranský, I.; Miron-Borzan, C.-Ş. A Novel Polymer Concrete Composite with GFRP Waste: Applications, Morphology, and Porosity Characterization. Appl. Sci. 2020, 10, 2060. [Google Scholar] [CrossRef]
- Alix, S.; Philippe, E.; Bessadok, A.; Lebrun, L.; Morvan, C.; Marais, S. Effect of Chemical Treatments on Water Sorption and Mechanical Properties of Flax Fibres. Bioresour. Technol. 2009, 100, 4742–4749. [Google Scholar] [CrossRef]
- Baroncini, E.A.; Kumar Yadav, S.; Palmese, G.R.; Stanzione, J.F., III. Recent Advances in Bio-Based Epoxy Resins and Bio-Based Epoxy Curing Agents. J. Appl. Polym. Sci. 2016, 133, 45. [Google Scholar] [CrossRef]
- Liu, X.; Xin, W.; Zhang, J. Rosin-Based Acid Anhydrides as Alternatives to Petrochemical Curing Agents. Green Chem. 2009, 11, 1018–1025. [Google Scholar] [CrossRef]
- Potočnik, P.; Misson, M.; Šturm, R.; Govekar, E.; Kek, T. Deep Feature Extraction Based on AE Signals for the Characterization of Loaded Carbon Fiber Epoxy and Glass Fiber Epoxy Composites. Appl. Sci. 2022, 12, 1867. [Google Scholar] [CrossRef]
- Hamam, Z.; Godin, N.; Reynaud, P.; Fusco, C.; Carrère, N.; Doitrand, A. Transverse Cracking Induced Acoustic Emission in Carbon Fiber—Epoxy Matrix Composite Laminates. Materials 2022, 15, 394. [Google Scholar] [CrossRef]
- Kalteremidou, K.A.; Murray, B.R.; Tsangouri, E.; Aggelis, D.G.; Van Hemelrijck, D.; Pyl, L. Multiaxial Damage Characterization of Carbon/Epoxy Angle-Ply Laminates under Static Tension by Combining in Situ Microscopy with Acoustic Emission. Appl. Sci. 2018, 8, 2021. [Google Scholar] [CrossRef]
- Sause, M.G.R.; Gribov, A.; Unwin, A.R.; Horn, S. Pattern Recognition Approach to Identify Natural Clusters of Acoustic Emission Signals. Pattern Recognit. Lett. 2012, 33, 17–23. [Google Scholar] [CrossRef]
- Bakhtiary Davijani, A.A.; Hajikhani, M.; Ahmadi, M. Acoustic Emission Based on Sentry Function to Monitor the Initiation of Delamination in Composite Materials. Mater. Des. 2011, 32, 3059–3065. [Google Scholar] [CrossRef]
- Grigg, S.; Almudaihesh, F.; Roberts, M.; Pullin, R. Impact Monitoring of CFRP Composites with Acoustic Emission and Laser Doppler Vibrometry. Eng. Res. Express 2021, 3, 015012. [Google Scholar] [CrossRef]
- Grigg, S.; Pullin, R.; Pearson, M.; Jenman, D.; Cooper, R.; Parkins, A.; Featherston, C.A. Development of a Low-Power Wireless Acoustic Emission Sensor Node for Aerospace Applications. Struct. Control Health Monit. 2021, 28, e2701. [Google Scholar] [CrossRef]
- Soman, R.; Wee, J.; Peters, K. Optical Fiber Sensors for Ultrasonic Structural Health Monitoring: A Review. Sensors 2021, 21, 7345. [Google Scholar] [CrossRef]
- Vanlanduit, S.; Sorgente, M.; Zadeh, A.R.; Güemes, A.; Faisal, N. Strain Monitoring. In Structural Health Monitoring Damage Detection Systems for Aerospace; Springer: Cham, Switzerland, 2021; pp. 219–241. [Google Scholar] [CrossRef]
- Sorgente, M.; Zadeh, A.R.; Saidoun, A. Performance Comparison Between Fiber-Optic and Piezoelectric Acoustic Emission Sensors. 2020. Available online: https://www.linkedin.com/posts/mario-sorgente_performance-comparison-between-fos-and-pzt-activity-6673982235219177472-LlZ7?utm_source=share&utm_medium=member_desktop (accessed on 27 August 2022).
- Aggelis, D.G.; Sause, M.G.R.; Packo, P.; Pullin, R.; Grigg, S.; Kek, T.; Lai, Y.K. Acoustic Emission. In Structural Health Monitoring Damage Detection Systems for Aerospace; Springer: Cham, Switzerland, 2021; pp. 175–217. [Google Scholar] [CrossRef]
- Willberry, J.O.; Papaelias, M.; Franklyn Fernando, G. Structural Health Monitoring Using Fibre Optic Acoustic Emission Sensors. Sensors 2020, 20, 6369. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Pang, F.; Liu, H.; Cheng, J.; Lv, L.; Zhang, X.; Chen, N.; Wang, T. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System. Sensors 2016, 16, 2026. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.H.I.; Guo-Ming, M.A.; Ya-Bo, L.I.; Zhou, H.Y.; Cheng-Rong, L.I. Vibration Detection for GIL Based on Phase-Sensitive OTDR and Interference. In Proceedings of the 26th International Conference on Optical Fiber Sensors, Lausanne Switzerland, 24–28 September 2018. [Google Scholar] [CrossRef]
- Williams, C.R.S.; Hutchinson, M.N.; Hart, J.D.; Merrill, M.H.; Finkel, P.; Pogue, W.R.; Cranch, G.A. Multichannel Fiber Laser Acoustic Emission Sensor System for Crack Detection and Location in Accelerated Fatigue Testing of Aluminum Panels. APL Photonics 2020, 5, 030803. [Google Scholar] [CrossRef]
- Ben Ameur, M.; El Mahi, A.; Rebiere, J.L.; Gimenez, I.; Beyaoui, M.; Abdennadher, M.; Haddar, M. Investigation and Identification of Damage Mechanisms of Unidirectional Carbon/Flax Hybrid Composites Using Acoustic Emission. Eng. Fract. Mech. 2019, 216, 106511. [Google Scholar] [CrossRef]
- Ferdinánd, M.; Várdai, R.; Móczó, J.; Pukánszky, B. Deformation and Failure Mechanism of Particulate Filled and Short Fiber Reinforced Thermoplastics: Detection and Analysis by Acoustic Emission Testing. Polymers 2021, 13, 3931. [Google Scholar] [CrossRef]
- Panek, M.; Blazewicz, S.; Konsztowicz, K.J. Correlation of Acoustic Emission with Fractography in Bending of Glass–Epoxy Composites. J. Nondestruct. Eval. 2020, 39, 1–10. [Google Scholar] [CrossRef]
- Chelliah, S.K.; Parameswaran, P.; Ramasamy, S.; Vellayaraj, A.; Subramanian, S. Optimization of Acoustic Emission Parameters to Discriminate Failure Modes in Glass–Epoxy Composite Laminates Using Pattern Recognition. Struct. Health Monit. 2019, 18, 1253–1267. [Google Scholar] [CrossRef]
- Nair, A.; Cai, C.S.; Kong, X. Acoustic Emission Pattern Recognition in CFRP Retrofitted RC Beams for Failure Mode Identification. Compos. Part B Eng. 2019, 161, 691–701. [Google Scholar] [CrossRef]
- Tang, J.; Soua, S.; Mares, C.; Gan, T.H. A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades. Sensors 2017, 17, 2507. [Google Scholar] [CrossRef]
- Hamdi, S.E.; Le Duff, A.; Simon, L.; Plantier, G.; Sourice, A.; Feuilloy, M. Acoustic Emission Pattern Recognition Approach Based on Hilbert-Huang Transform for Structural Health Monitoring in Polymer-Composite Materials. Appl. Acoust. 2013, 74, 746–757. [Google Scholar] [CrossRef]
- García-Martín, J.; Gómez-Gil, J.; Vázquez-Sánchez, E. Non-Destructive Techniques Based on Eddy Current Testing. Sensors 2011, 11, 2525–2565. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Mo, L.; You, D.; Li, Z. Tight Butt Joint Weld Detection Based on Optical Flow and Particle Filtering of Magneto-Optical Imaging. Mech. Syst. Signal Process 2017, 96, 16–30. [Google Scholar] [CrossRef]
- Miao, R.; Gao, Y.; Ge, L.; Jiang, Z.; Zhang, J. Online Defect Recognition of Narrow Overlap Weld Based on Two-Stage Recognition Model Combining Continuous Wavelet Transform and Convolutional Neural Network. Comput. Ind. 2019, 112, 103115. [Google Scholar] [CrossRef]
- Zhang, C.; Lim, P.; Qin, A.K.; Tan, K.C. Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2306–2318. [Google Scholar] [CrossRef]
- Verstraete, D.; Ferrada, A.; Droguett, E.L.; Meruane, V.; Modarres, M. Deep Learning Enabled Fault Diagnosis Using Time-Frequency Image Analysis of Rolling Element Bearings. Shock Vib. 2017, 2017, 5067651. [Google Scholar] [CrossRef]
- Mou, L.; Ghamisi, P.; Zhu, X.X. Deep Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, J.; Chen, H.; Li, G.; Liu, J.; Xu, C. Machine Learning-Based Thermal Response Time Ahead Energy Demand Prediction for Building Heating Systems. Appl. Energy 2018, 221, 16–27. [Google Scholar] [CrossRef]
- Hesser, D.F.; Mostafavi, S.; Kocur, G.K.; Markert, B. Identification of Acoustic Emission Sources for Structural Health Monitoring Applications Based on Convolutional Neural Networks and Deep Transfer Learning. Neurocomputing 2021, 453, 1–12. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–15. [Google Scholar]
- Härdle, W.K.; Simar, L. Applied Multivariate Statistical Analysis, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2015; ISBN 9783662451717. [Google Scholar]
- Krzanowski, W.J. Principles of Multivariate Analysis: A User’s Perspective; Oxford University Press: New York, NY, USA, 1988. [Google Scholar]
- Haykin, S. Neural Networks and Learning Machines, 3rd ed.; Pearson: Upper Saddle River, NJ, USA, 2009; ISBN 9780131471399. [Google Scholar]
- Foresee, F.D.; Hagan, M.T. Gauss-Newton Approximation to Bayesian Learning. In Proceedings of the International Joint Conference on Neural Networks, Houston, TX, USA, 12 June 1997; pp. 1930–1935. [Google Scholar]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme Learning Machine: Theory and Applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Ding, S.F.; Xu, X.Z.; Nie, R. Extreme Learning Machine and Its Applications. Neural Comput. Appl. 2014, 25, 549–556. [Google Scholar] [CrossRef]
- Huang, G.B.; Chen, L. Convex Incremental Extreme Learning Machine. Neurocomputing 2007, 70, 3056–3062. [Google Scholar] [CrossRef]
- Huang, G.B.; Chen, L.; Siew, C.K. Universal Approximation Using Incremental Constructive Feedforward Networks with Random Hidden Nodes. IEEE Trans. Neural Netw. 2006, 17, 879–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Property/Curing Cycle | 24 h, 20 °C + 8 h, 80 °C |
---|---|
Tensile strength (MPa) | 68 |
Young modulus (MPa) | 2980 |
Elongation (%) | 6.4 |
Charpy Impact toughness (kJ/m2) | 52 |
Glass transition temperature (°C) | 78 |
CAE Model | CAE-1 | CAE-2 | ||
---|---|---|---|---|
Input scalogram shape (height × length) | 48 × 432 | 32 × 512 | ||
Layer’s fixed hyperparameters * | Kernel shape | Stride | Kernel shape | Stride |
(1st) Convolution Layers | 3 × 5 | 1 × 3 | 3 × 3 | 1 × 1 |
(1st) Max-Pooling Layers | 2 × 2 | 2 × 2 | 2 × 2 | 2 × 2 |
(2nd) Convolution Layers | 3 × 5 | 1 × 3 | 3 × 3 | 1 × 1 |
(2nd) Max-Pooling Layers | 2 × 2 | 2 × 2 | 2 × 4 | 2 × 4 |
(Latent) Convolution Layer | 3 × 3 | 1 × 1 | 2 × 64 | 1 × 1 |
(Latent) Max-Pooling Layer | 2 × 2 | 2 × 2 | 2 × 2 | 2 × 2 |
5 Fully-connected Layers | / | / | / | / |
(Latent) Up-Sampling Layer | 2 × 2 | 2 × 2 | 2 × 2 | 2 × 2 |
(Latent) Transposed Convolution Layer | 3 × 3 | 1 × 1 | 2 × 64 | 1 × 1 |
(1st) Up-Sampling Layers | 2 × 2 | 2 × 2 | 2 × 4 | 2 × 4 |
Mechanical Properties | Designation | Temperature (°C) | Flax Composite | GFE Composite |
---|---|---|---|---|
Flexural strength | σf (MPa) | 145 | 1020 | |
Flexural modulus | Ef (GPa) | 20 °C | 8.6 | 41.6 |
Flexural strain at break | εB (%) | 2.7 | 2.5 | |
Flexural strength | σf (MPa) | 135 | 952 | |
Flexural modulus | Ef (GPa) | −80 °C | 11.3 | 79 |
Flexural strain at break | εB (%) | 1.5 | 1.2 |
CAE Model | Deep Autoencoder | Classification Accuracy [%] | ||||
---|---|---|---|---|---|---|
Architecture | LDA | QDA | NN | ELM | Mean | |
CAE-1 | 12-24-10-256-6-100-256 | 75.5 | 75.3 | 80.1 | 79.8 | 77.7 |
16-32-14-256-6-100-128 | 75.6 | 76.1 | 80.5 | 79.9 | 78.0 | |
30-60-30-512-12-65-32 | 75.2 | 74.6 | 80.4 | 79.2 | 77.4 | |
32-64-20-512-8-110-20 | 75.3 | 75.0 | 80.5 | 79.4 | 77.6 | |
32-64-26-512-10-110-64 | 75.2 | 74.7 | 80.8 | 79.3 | 77.5 | |
32-74-30-432-14-65-32 | 71.7 | 72.3 | 78.8 | 79.5 | 75.6 | |
34-68-34-648-16-65-32 | 75.0 | 75.2 | 77.7 | 79.3 | 76.8 | |
38-76-34-564-16-45-32 | 75.2 | 74.4 | 78.2 | 79.6 | 76.9 | |
CAE-2 | 16-32-14-256-6-100-256 | 74.5 | 75.5 | 80.2 | 79.8 | 77.5 |
32-64-16-256-6-75-256 | 73.7 | 75.6 | 80.4 | 78.2 | 77.0 | |
32-64-20-512-8-100-256 | 75.8 | 75.8 | 80.9 | 78.7 | 77.8 | |
6-12-12-128-4-75-356 | 74.0 | 73.3 | 77.4 | 77.9 | 75.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kek, T.; Potočnik, P.; Misson, M.; Bergant, Z.; Sorgente, M.; Govekar, E.; Šturm, R. Characterization of Biocomposites and Glass Fiber Epoxy Composites Based on Acoustic Emission Signals, Deep Feature Extraction, and Machine Learning. Sensors 2022, 22, 6886. https://doi.org/10.3390/s22186886
Kek T, Potočnik P, Misson M, Bergant Z, Sorgente M, Govekar E, Šturm R. Characterization of Biocomposites and Glass Fiber Epoxy Composites Based on Acoustic Emission Signals, Deep Feature Extraction, and Machine Learning. Sensors. 2022; 22(18):6886. https://doi.org/10.3390/s22186886
Chicago/Turabian StyleKek, Tomaž, Primož Potočnik, Martin Misson, Zoran Bergant, Mario Sorgente, Edvard Govekar, and Roman Šturm. 2022. "Characterization of Biocomposites and Glass Fiber Epoxy Composites Based on Acoustic Emission Signals, Deep Feature Extraction, and Machine Learning" Sensors 22, no. 18: 6886. https://doi.org/10.3390/s22186886
APA StyleKek, T., Potočnik, P., Misson, M., Bergant, Z., Sorgente, M., Govekar, E., & Šturm, R. (2022). Characterization of Biocomposites and Glass Fiber Epoxy Composites Based on Acoustic Emission Signals, Deep Feature Extraction, and Machine Learning. Sensors, 22(18), 6886. https://doi.org/10.3390/s22186886