Improving the Efficiency of Multistep Short-Term Electricity Load Forecasting via R-CNN with ML-LSTM
Abstract
:1. Introduction
- The collected benchmark datasets contain a lot of missing values and outliers, which occur due to defaulted meters, weather conditions, and abnormal customer consumption. These abnormalities and redundancies in datasets lead the forecasting network to ambiguous predictions. To resolve this problem, we performed data preprocessing strategies, including outlier removal via the three sigma rules of thumb algorithm, missing value via NAN interpolation method, and the normalization of the data using the MinMax scaler.
- We present a deep R-CNN integrated with ML-LSTM for power forecasting using real power consumption data. The motivation behind R-CNN with ML-LSTM is to extract patterns and time-varied information from the input data for effective forecasting.
- The proposed model results in the lowest error rates of MAE, MSE, RMSE, and MAPE and the highest R2 compared to recent literature. For the IHEPC dataset, the proposed model achieved 0.0447, 0.0132, 0.002, 0.9759, and 1.024 for RMSE, MAE, MSE, R2, and MAPE, respectively, over the hourly IHEPC dataset while these values are 0.0447, 0.0132, 0.002, 0.9759, and 1.024 over the IHEPC daily dataset. For the PJM dataset, the proposed model achieved 0.0223, 0.0163, 0.0005, 0.9907, 0.5504 for RMSE, MAE, MSE, R2, and MAPE, respectively. The lowest error metrics indicated the supremacy of the proposed model over state-of-the-art methods.
2. Literature Review
3. Proposed Method
3.1. Data Preprocessing
3.2. R-CNN with ML-LSTM
3.3. Architecture Design
4. Results
4.1. Experimental Setup
4.2. Evaluation Metrics
4.3. Datasets
4.4. Comparative Analysis
5. Evaluation of IHEPC Dataset
6. Evaluation of the PJM Dataset
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yar, H.; Imran, A.S.; Khan, Z.A.; Sajjad, M.; Kastrati, Z. Towards smart home automation using IoT-enabled edge-computing paradigm. Sensors 2021, 21, 4932. [Google Scholar] [CrossRef] [PubMed]
- Vrablecová, P.; Ezzeddine, A.B.; Rozinajová, V.; Šárik, S.; Sangaiah, A.K. Smart grid load forecasting using online support vector regression. Comput. Electr. Eng. 2018, 65, 102–117. [Google Scholar] [CrossRef]
- Sopelsa Neto, N.F.; Stefenon, S.F.; Meyer, L.H.; Ovejero, R.G.; Leithardt, V.R.Q. Fault Prediction Based on Leakage Current in Contaminated Insulators Using Enhanced Time Series Forecasting Models. Sensors 2022, 22, 6121. [Google Scholar] [CrossRef] [PubMed]
- He, W. Load forecasting via deep neural networks. Procedia Comput. Sci. 2017, 122, 308–314. [Google Scholar] [CrossRef]
- Huang, N.; Lu, G.; Xu, D. A permutation importance-based feature selection method for short-term electricity load forecasting using random forest. Energies 2016, 9, 767. [Google Scholar] [CrossRef]
- Dang-Ha, T.-H.; Bianchi, F.M.; Olsson, R. Local short term electricity load forecasting: Automatic approaches. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 4267–4274. [Google Scholar]
- Sieminski, A. International energy outlook. Energy Inf. Adm. (EIA) 2014, 18, 2. [Google Scholar]
- Lam, J.C.; Wan, K.K.; Tsang, C.; Yang, L. Building energy efficiency in different climates. Energy Convers. Manag. 2008, 49, 2354–2366. [Google Scholar] [CrossRef]
- Allouhi, A.; El Fouih, Y.; Kousksou, T.; Jamil, A.; Zeraouli, Y.; Mourad, Y. Energy consumption and efficiency in buildings: Current status and future trends. J. Clean. Prod. 2015, 109, 118–130. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, J.-l.; Liang, R.-b. Development of an energy monitoring system for large public buildings. Energy Build. 2013, 66, 41–48. [Google Scholar] [CrossRef]
- Ma, X.; Cui, R.; Sun, Y.; Peng, C.; Wu, Z. Supervisory and Energy Management System of large public buildings. In Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation, Xi’an, China, 4–7 August 2010; pp. 928–933. [Google Scholar]
- Khodayar, M.; Kaynak, O.; Khodayar, M.E. Rough deep neural architecture for short-term wind speed forecasting. IEEE Trans. Ind. Inform. 2017, 13, 2770–2779. [Google Scholar] [CrossRef]
- Mohan, N.; Soman, K.; Kumar, S.S. A data-driven strategy for short-term electric load forecasting using dynamic mode decomposition model. Appl. Energy 2018, 232, 229–244. [Google Scholar] [CrossRef]
- Shi, Z.; Liang, H.; Dinavahi, V. Direct interval forecast of uncertain wind power based on recurrent neural networks. IEEE Trans. Sustain. Energy 2017, 9, 1177–1187. [Google Scholar] [CrossRef]
- Bikcora, C.; Verheijen, L.; Weiland, S. Density forecasting of daily electricity demand with ARMA-GARCH, CAViaR, and CARE econometric models. Sustain. Energy Grids Netw. 2018, 13, 148–156. [Google Scholar] [CrossRef]
- Boroojeni, K.G.; Amini, M.H.; Bahrami, S.; Iyengar, S.; Sarwat, A.I.; Karabasoglu, O. A novel multi-time-scale modeling for electric power demand forecasting: From short-term to medium-term horizon. Electr. Power Syst. Res. 2017, 142, 58–73. [Google Scholar] [CrossRef]
- Fumo, N.; Biswas, M.R. Regression analysis for prediction of residential energy consumption. Renew. Sustain. Energy Rev. 2015, 47, 332–343. [Google Scholar] [CrossRef]
- Vu, D.H.; Muttaqi, K.M.; Agalgaonkar, A. A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables. Appl. Energy 2015, 140, 385–394. [Google Scholar] [CrossRef]
- Braun, M.; Altan, H.; Beck, S. Using regression analysis to predict the future energy consumption of a supermarket in the UK. Appl. Energy 2014, 130, 305–313. [Google Scholar] [CrossRef]
- Shi, H.; Xu, M.; Li, R. Deep learning for household load forecasting—A novel pooling deep RNN. IEEE Trans. Smart Grid 2017, 9, 5271–5280. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, Q.; Kang, C. Secondary forecasting based on deviation analysis for short-term load forecasting. IEEE Trans. Power Syst. 2010, 26, 500–507. [Google Scholar] [CrossRef]
- Tsekouras, G.J.; Hatziargyriou, N.D.; Dialynas, E.N. An optimized adaptive neural network for annual midterm energy forecasting. IEEE Trans. Power Syst. 2006, 21, 385–391. [Google Scholar] [CrossRef]
- Chen, Y.; Luh, P.B.; Guan, C.; Zhao, Y.; Michel, L.D.; Coolbeth, M.A.; Friedland, P.B.; Rourke, S.J. Short-term load forecasting: Similar day-based wavelet neural networks. IEEE Trans. Power Syst. 2009, 25, 322–330. [Google Scholar] [CrossRef]
- Lahouar, A.; Slama, J.B.H. Day-ahead load forecast using random forest and expert input selection. Energy Convers. Manag. 2015, 103, 1040–1051. [Google Scholar] [CrossRef]
- Li, S.; Wang, P.; Goel, L. A novel wavelet-based ensemble method for short-term load forecasting with hybrid neural networks and feature selection. IEEE Trans. Power Syst. 2015, 31, 1788–1798. [Google Scholar] [CrossRef]
- Kong, W.; Dong, Z.Y.; Hill, D.J.; Luo, F.; Xu, Y. Short-term residential load forecasting based on resident behaviour learning. IEEE Trans. Power Syst. 2017, 33, 1087–1088. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, P.; Chu, Y.; Li, W.; Wu, Y.; Ni, L.; Bao, Y.; Wang, K. Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings. Appl. Energy 2017, 195, 659–670. [Google Scholar] [CrossRef]
- Cao, G.; Wu, L. Support vector regression with fruit fly optimization algorithm for seasonal electricity consumption forecasting. Energy 2016, 115, 734–745. [Google Scholar] [CrossRef]
- Zhong, H.; Wang, J.; Jia, H.; Mu, Y.; Lv, S. Vector field-based support vector regression for building energy consumption prediction. Appl. Energy 2019, 242, 403–414. [Google Scholar] [CrossRef]
- Li, C.; Tao, Y.; Ao, W.; Yang, S.; Bai, Y. Improving forecasting accuracy of daily enterprise electricity consumption using a random forest based on ensemble empirical mode decomposition. Energy 2018, 165, 1220–1227. [Google Scholar] [CrossRef]
- Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y.; Zhang, Y. Short-term residential load forecasting based on LSTM recurrent neural network. IEEE Trans. Smart Grid 2017, 10, 841–851. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Wang, S.; Wang, D. Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting. Int. J. Electr. Power Energy Syst. 2019, 109, 470–479. [Google Scholar] [CrossRef]
- Raza, M.Q.; Mithulananthan, N.; Li, J.; Lee, K.Y. Multivariate ensemble forecast framework for demand prediction of anomalous days. IEEE Trans. Sustain. Energy 2018, 11, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Alsanea, M.; Dukyil, A.S.; Riaz, B.; Alebeisat, F.; Islam, M.; Habib, S. To Assist Oncologists: An Efficient Machine Learning-Based Approach for Anti-Cancer Peptides Classification. Sensors 2022, 22, 4005. [Google Scholar] [CrossRef]
- Kim, T.-Y.; Cho, S.-B. Predicting residential energy consumption using CNN-LSTM neural networks. Energy 2019, 182, 72–81. [Google Scholar] [CrossRef]
- Ullah, F.U.M.; Ullah, A.; Haq, I.U.; Rho, S.; Baik, S.W.J.I.A. Short-Term Prediction of Residential Power Energy Consumption via CNN and Multilayer Bi-directional LSTM Networks. IEEE Access 2019, 8, 123369–123380. [Google Scholar] [CrossRef]
- Khan, Z.A.; Hussain, T.; Ullah, A.; Rho, S.; Lee, M.; Baik, S.W. Towards Efficient Electricity Forecasting in Residential and Commercial Buildings: A Novel Hybrid CNN with a LSTM-AE based Framework. Sensors 2020, 20, 1399. [Google Scholar] [CrossRef]
- Afrasiabi, M.; Mohammadi, M.; Rastegar, M.; Stankovic, L.; Afrasiabi, S.; Khazaei, M. Deep-based conditional probability density function forecasting of residential loads. IEEE Trans. Smart Grid 2020, 11, 3646–3657. [Google Scholar] [CrossRef]
- Genes, C.; Esnaola, I.; Perlaza, S.M.; Ochoa, L.F.; Coca, D. Recovering missing data via matrix completion in electricity distribution systems. In Proceedings of the 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Edinburgh, UK, 3–6 July 2016; pp. 1–6. [Google Scholar]
- Habib, S.; Alsanea, M.; Aloraini, M.; Al-Rawashdeh, H.S.; Islam, M.; Khan, S. An Efficient and Effective Deep Learning-Based Model for Real-Time Face Mask Detection. Sensors 2022, 22, 2602. [Google Scholar] [CrossRef]
- Box, G.E.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Yeo, I.K.; Johnson, R.A. A new family of power transformations to improve normality or symmetry. Biometrika 2000, 87, 954–959. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, H.; Wang, H.; Zhu, T.; Zhang, K. 3D-CNN-based feature extraction of ground-based cloud images for direct normal irradiance prediction. Sol. Energy 2019, 181, 510–518. [Google Scholar] [CrossRef]
- Yar, H.; Hussain, T.; Khan, Z.A.; Koundal, D.; Lee, M.Y.; Baik, S.W. Vision sensor-based real-time fire detection in resource-constrained IoT environments. Comput. Intell. Neurosci. 2021, 2021, 5195508. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, K.; Duić, N.; Mi, Z.; Hodge, B.-M.; Shafie-khah, M.; Catalão, J.P. Association rule mining based quantitative analysis approach of household characteristics impacts on residential electricity consumption patterns. Energy Convers. Manag. 2018, 171, 839–854. [Google Scholar] [CrossRef]
- Ullah, W.; Hussain, T.; Khan, Z.A.; Haroon, U.; Baik, S.W. Intelligent dual stream CNN and echo state network for anomaly detection. Knowl.-Based Syst. 2022, 253, 109456. [Google Scholar] [CrossRef]
- Yar, H.; Hussain, T.; Khan, Z.A.; Lee, M.Y.; Baik, S.W. Fire Detection via Effective Vision Transformers. J. Korean Inst. Next Gener. Comput. 2021, 17, 21–30. [Google Scholar]
- Aladhadh, S.; Alsanea, M.; Aloraini, M.; Khan, T.; Habib, S.; Islam, M. An Effective Skin Cancer Classification Mechanism via Medical Vision Transformer. Sensors 2022, 22, 4008. [Google Scholar] [CrossRef]
- Ma, X.; Dai, Z.; He, Z.; Ma, J.; Wang, Y.; Wang, Y. Learning traffic as images: A deep convolutional neural network for large-scale transportation network speed prediction. Sensors 2017, 17, 818. [Google Scholar] [CrossRef]
- Khan, Z.A.; Ullah, W.; Ullah, A.; Rho, S.; Lee, M.Y.; Baik, S.W. An Adaptive Filtering Technique for Segmentation of Tuberculosis in Microscopic Images; Association for Computing Machinery: New York, NY, USA, 2020; pp. 184–187. [Google Scholar]
- Wang, H.; Yi, H.; Peng, J.; Wang, G.; Liu, Y.; Jiang, H.; Liu, W. Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network. Energy Convers. Manag. 2017, 153, 409–422. [Google Scholar] [CrossRef]
- Ali, H.; Farman, H.; Yar, H.; Khan, Z.; Habib, S.; Ammar, A. Deep learning-based election results prediction using Twitter activity. Soft Comput. 2021, 26, 7535–7543. [Google Scholar] [CrossRef]
- Chen, K.; Chen, K.; Wang, Q.; He, Z.; Hu, J.; He, J. Short-term load forecasting with deep residual networks. IEEE Trans. Smart Grid 2018, 10, 3943–3952. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- He, K.; Sun, J. Convolutional neural networks at constrained time cost. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5353–5360. [Google Scholar]
- Rajabi, R.; Estebsari, A. Deep Learning Based Forecasting of Individual Residential Loads Using Recurrence Plots. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–5. [Google Scholar]
- Kim, J.-Y.; Cho, S.-B. Electric energy consumption prediction by deep learning with state explainable autoencoder. Energies 2019, 12, 739. [Google Scholar] [CrossRef]
- Han, T.; Muhammad, K.; Hussain, T.; Lloret, J.; Baik, S.W. An efficient deep learning framework for intelligent energy management in IoT networks. IEEE Internet Things J. 2020, 8, 3170–3179. [Google Scholar] [CrossRef]
- Mocanu, E.; Nguyen, P.H.; Gibescu, M.; Kling, W.L. Deep learning for estimating building energy consumption. Sustain. Energy Grids Netw. 2016, 6, 91–99. [Google Scholar] [CrossRef]
- Khan, Z.A.; Hussain, T.; Baik, S.W. Boosting energy harvesting via deep learning-based renewable power generation prediction. J. King Saud Univ.-Sci. 2022, 34, 101815. [Google Scholar] [CrossRef]
- Khan, Z.A.; Ullah, A.; Haq, I.U.; Hamdy, M.; Maurod, G.M.; Muhammad, K.; Hijji, M.; Baik, S.W. Efficient Short-Term Electricity Load Forecasting for Effective Energy Management. Sustain. Energy Technol. Assess. 2022, 53, 102337. [Google Scholar] [CrossRef]
- Khan, Z.A.; Ullah, A.; Ullah, W.; Rho, S.; Lee, M.; Baik, S.W. Electrical energy prediction in residential buildings for short-term horizons using hybrid deep learning strategy. Appl. Sci. 2020, 10, 8634. [Google Scholar] [CrossRef]
- Sajjad, M.; Khan, Z.A.; Ullah, A.; Hussain, T.; Ullah, W.; Lee, M.Y.; Baik, S.W. A novel CNN-GRU-based hybrid approach for short-term residential load forecasting. IEEE Access 2020, 8, 143759–143768. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Hawash, H.; Sallam, K.; Askar, S.S.; Abouhawwash, M. STLF-Net: Two-stream deep network for short-term load forecasting in residential buildings. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 4296–4311. [Google Scholar] [CrossRef]
- Khan, S.U.; Haq, I.U.; Khan, Z.A.; Khan, N.; Lee, M.Y.; Baik, S.W. Atrous Convolutions and Residual GRU Based Architecture for Matching Power Demand with Supply. Sensors 2021, 21, 7191. [Google Scholar] [CrossRef]
- Khan, Z.A.; Hussain, T.; Haq, I.U.; Ullah, F.U.M.; Baik, S.W. Towards efficient and effective renewable energy prediction via deep learning. Energy Rep. 2022, 8, 10230–10243. [Google Scholar] [CrossRef]
- Mujeeb, S.; Javaid, N. ESAENARX and DE-RELM: Novel schemes for big data predictive analytics of electricity load and price. Sustain. Cities Soc. 2019, 51, 101642. [Google Scholar] [CrossRef]
- Gao, W.; Darvishan, A.; Toghani, M.; Mohammadi, M.; Abedinia, O.; Ghadimi, N. Different states of multi-block based forecast engine for price and load prediction. Int. J. Electr. Power Energy Syst. 2019, 104, 423–435. [Google Scholar] [CrossRef]
- Chou, J.S.; Truong, D.N. Multistep energy consumption forecasting by metaheuristic optimization of time-series analysis and machine learning. Int. J. Energy Res. 2021, 45, 4581–4612. [Google Scholar] [CrossRef]
Layer | Filter-Size | Kernel-Size | Layer-Parameter |
---|---|---|---|
Input | - | - | |
Convolutional (conv)_1 | 32 | 7 | 10,816 |
conv_2 | 32 | 5 | 20,544 |
Add [conv_1, conv_2] | - | - | |
conv_3 | 64 | 3 | 12,352 |
Add [conv_2, conv_3] | - | - | |
Convolutional_4 | 128 | 1 | 4160 |
Add [conv_3, conv_4] | - | - | |
LSTM | 100 | - | 66,000 |
LSTM | 100 | - | 80,400 |
LSTM | 100 | - | 80,400 |
FC | 128 | - | 12,928 |
FC | 60 | - | 7740 |
Total parameters | 295,340 |
Attributes | Description | Units |
---|---|---|
Date and time | Comprise the range of datetime values | dd/mm/yyyy and hh:mm:ss |
Global active, reactive power and intensity | Minutely averaged Global active1, reactive Power2, and intensity3 values | kilowatt (Kw)1,2 |
Ampere (A)3 | ||
Voltage | Minutely averaged voltage values | Volt(V) |
Method | RMSE | MAE | MSE | R2 | MAPE |
---|---|---|---|---|---|
Linear regression [35] | 0.6570 | 0.5022 | 0.4247 | - | 83.74 |
ANN [56] | 1.15 | 1.08 | - | - | - |
CNN [37] | 0.67 | 0.47 | 0.37 | - | - |
CNNLSTM [35] | 0.595 | 0.3317 | 0.3549 | - | 32.83 |
CNN-BDLSTM [36] | 0.565 | 0.346 | 0.319 | - | 29.10 |
CNNLSTM-autoencoder [37] | 0.47 | 0.31 | 0.19 | - | - |
SE-AE [57] | - | 0.395 | 0.384 | - | - |
GRU [58] | 0.41 | 0.19 | 0.17 | - | 34.48 |
FCRBM [59] | 0.666 | - | - | −0.0925 | |
CNNESN [60] | 0.0472 | 0.0266 | 0.0022 | - | - |
Residual CNN Stacked LSTM [61] | 0.058 | 0.003 | 0.038 | - | - |
CNN-BiGRU [62] | 0.42 | 0.29 | 0.18 | - | - |
CNN-GRU [63] | 0.47 | 0.33 | 0.22 | - | - |
STLF-Net [64] | 0.4386 | 0.2674 | 0.1924 | - | 36.24 |
Residual GRU [65] | 0.4186 | 0.2635 | 0.1753 | - | - |
ESN-CNN [66] | 0.2153 | 0.1137 | 0.0463 | - | - |
Proposed | 0.0325 | 0.0144 | 0.0011 | 0.9841 | 1.024 |
Method | RMSE | MAE | MSE | R2 | MAPE |
---|---|---|---|---|---|
Linear regression [35] | 0.5026 | 0.3915 | 0.2526 | - | 52.69 |
CNN [37] | 0.07 | 0.05 | 0.006 | - | - |
LSTM [35] | 0.4905 | 0.4125 | 0.2406 | - | 3872 |
CNN-LSTM [35] | 0.3221 | 0.2569 | 0.1037 | 37.83 | |
FCRBM [59] | 0.828 | - | - | 0.3304 | |
Proposed | 0.0447 | 0.0132 | 0.002 | 0.9795 | 2.457 |
Dataset | Method | RMSE | MAE | MSE | R2 | MAPE |
---|---|---|---|---|---|---|
AEP | Mujeeb et al. [67] | 0.386 | - | - | - | 1.08 |
Gao et al. [68] | 0.49 | - | - | - | 1.14 | |
Han et al. [58] | 0.054 | - | - | - | - | |
Khan et al. [61] | 0.031 | 0.001 | 0.027 | - | - | |
Proposed | 0.0223 | 0.0163 | 0.0005 | 0.9907 | 0.5504 | |
DAYTON | Khan et al. [61] | 0.046 | 0.033 | 0.002 | - | - |
Proposed | 0.0206 | 0.0144 | 0.0004 | 0.9911 | 0.4982 | |
COMED | Khan et al. [61] | 0.044 | 0.030 | 0.002 | - | - |
Proposed | 0.0216 | 0.0131 | 0.0005 | 0.9906 | 0.5475 | |
DOM | Khan et al. [61] | 0.057 | 0.039 | 0.003 | - | - |
Proposed | 0.0212 | 0.0138 | 0.0005 | 0.9905 | 0.5987 | |
DEOK | Khan et al. [61] | 0.053 | 0.036 | 0.003 | - | - |
Proposed | 0.0174 | 0.0129 | 0.0003 | 0.9932 | 0.3974 | |
EKPC | Khan et al. [61] | 0.055 | 0.034 | 0.003 | - | - |
Proposed | 0.0274 | 0.0202 | 0.0008 | 0.9882 | 0.7965 | |
DUQ | Khan et al. [61] | 0.054 | 0.041 | 0.003 | - | - |
Proposed | 0.0430 | 0.0277 | 0.0009 | 0.9975 | 0.8234 | |
PJME | Khan et al. [61] | 0.043 | 0.031 | 0.002 | - | - |
Proposed | 0.0199 | 0.0128 | 0.0004 | 0.9913 | 0.4721 | |
NI | Khan et al. [61] | 0.050 | 0.033 | 0.002 | - | - |
Proposed | 0.0178 | 0.0129 | 0.0003 | 0.9930 | 0.3748 | |
PJMW | Khan et al. [61] | 0.038 | 0.027 | 0.001 | - | - |
Proposed | 0.0145 | 0.0102 | 0.0002 | 0.9949 | 0.2864 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsharekh, M.F.; Habib, S.; Dewi, D.A.; Albattah, W.; Islam, M.; Albahli, S. Improving the Efficiency of Multistep Short-Term Electricity Load Forecasting via R-CNN with ML-LSTM. Sensors 2022, 22, 6913. https://doi.org/10.3390/s22186913
Alsharekh MF, Habib S, Dewi DA, Albattah W, Islam M, Albahli S. Improving the Efficiency of Multistep Short-Term Electricity Load Forecasting via R-CNN with ML-LSTM. Sensors. 2022; 22(18):6913. https://doi.org/10.3390/s22186913
Chicago/Turabian StyleAlsharekh, Mohammed F., Shabana Habib, Deshinta Arrova Dewi, Waleed Albattah, Muhammad Islam, and Saleh Albahli. 2022. "Improving the Efficiency of Multistep Short-Term Electricity Load Forecasting via R-CNN with ML-LSTM" Sensors 22, no. 18: 6913. https://doi.org/10.3390/s22186913
APA StyleAlsharekh, M. F., Habib, S., Dewi, D. A., Albattah, W., Islam, M., & Albahli, S. (2022). Improving the Efficiency of Multistep Short-Term Electricity Load Forecasting via R-CNN with ML-LSTM. Sensors, 22(18), 6913. https://doi.org/10.3390/s22186913