Development of an Intelligent Imaging System for Ripeness Determination of Wild Pistachios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Image Acquisition
2.3. Image Processing
2.3.1. Image Pre-Processing
2.3.2. Feature Extraction
2.3.3. Feature Selection
2.3.4. Classification
3. Results and Discussion
3.1. Image Pre-Processing
3.2. Feature Extraction
3.3. Discriminant Analysis Classifiers
3.4. Artificial Neural Network Classifier
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valipour, P. Economical investigation of wild pistachio. The First National Seminar of Wild Pistachio (Green Pearl). In Proceedings of the Natural Resources Research Center of Ilam Province, Ilam, Iran, 4–5 November 1995. (In Persian). [Google Scholar]
- Zohary, M. A monographical study of genus Pistacia. Palest. J. Bot. 1952, 5, 187–228. [Google Scholar]
- Statista. Supply Value of Pistachios Worldwide from 2009/2010 to 2021/2022. 2022. Available online: https://www.statista.com/statistics/964028/production-value-of-pistachios-worldwide/ (accessed on 19 September 2022).
- Statista. Pistachio Market Worldwide and in the U.S.—Statistics & Facts. 2022. Available online: https://www.statista.com/topics/5158/pistachio-market/#topicHeader__wrapper/ (accessed on 19 September 2022).
- Hosseinzadeh, J.; Tahmasebi, M. Economic-Social Values of Wild Pistachio in Ilam Province. In Proceedings of the Natural Resources Research Center of Ilam Province, Ilam, Iran, 4–5 November 1995. (In Persian). [Google Scholar]
- Mousavian, D.A.; Niazmand, R.; Shariaee, P. Investigation of the effect of coriander kernel oil, its non-detergent soaps in comparison with different coatings on the oil absorption of potato slices during the deep frying process. J. Innov. Food Sci. Technol. 2015, 7, 69–75. [Google Scholar]
- Fattahi, M. Ecology of wild pistachio. The First National Seminar of Wild Pistachio (Green Pearl). In Proceedings of the Natural Resources Research Center of Ilam Province, Ilam, Iran, 4–5 November 1995. (In Persian). [Google Scholar]
- Heidarbeigi, K.; Ahmadi, H.; Kheiralipour, K.; Tabatabaeefar, A. Some Physical and Mechanical Properties of Wild Pistachio (Pistachio Mutica L.). Am. Eurasian J. Agric. Environ. Sci. 2008, 3, 521. [Google Scholar]
- Tohidi, M.; Khayami, M.; Nejati, V.; Meftahizade, H. Evaluation of antibacterial activity and wound healing of Pistacia atlantica and Pistacia khinjuk. J. Med. Plant Res. 2011, 5, 4310–4314. [Google Scholar]
- Panahi, M.; Barzegar, H.; Hojjati, M. The effect of coriander gum essential oil on antimicrobial and antioxidant properties of starch edible film. Q. J. New Food Technol. 2017, 5, 77–89. [Google Scholar]
- Minaiyan, M.; Karimi, F.; Ghannadi, A. Anti-inflammatory effect of Pistacia atlantica subsp. kurdica volatile oil and gum on acetic acid-induced acute colitis in rat. Res. J. Pharmacogn. 2015, 2, 1–12. [Google Scholar]
- Ghalem, R.B.; Mohamed, B. Antimicrobial activity determination of the gum of Pistacia atlantica Desf. Afr. J. Microbiol. Res. 2010, 4, 2457–2460. [Google Scholar]
- Gourine, N.; Yousfi, M.; Bombarda, I.; Nadjemi, B.; Stocker, P.; Gaydon, E.M. Antioxidant activities and chemical composition of essential oil of Pistacia atlantica from Algeria. Ind. Crops Prod. 2010, 31, 203–208. [Google Scholar] [CrossRef]
- Hatamnia, A.A.; Abbaspour, N.; Darvishzadeh, R. Antioxidant activity and phenolic profile of different parts of Bene (Pistacia atlantica subsp. kurdica) fruits. Food Chem. 2014, 145, 306–311. [Google Scholar] [CrossRef]
- Hosseini, F.; Adlgostar, A.; Sharifnia, F. Antibacterial activity of Pistacia extracts on Streptococcus mutans biofilm. Int. Res. J. Biol. Sci. 2013, 2, 1–7. [Google Scholar]
- Erkinbaev, C.; Nadimi, M.; Paliwal, J. A unified heuristic approach to simultaneously detect fusarium and ergot damage in wheat. Meas. Food 2022, 7, 100043. [Google Scholar] [CrossRef]
- Ali Shah, S.S.; Zeb, A.; Qureshi, W.S.; Arslan, M.; Ullah Malik, A.; Alasmary, W.; Alanazi, E. Towards fruit maturity estimation using NIR spectroscopy. Infrared Phys. Technol. 2020, 111, 103479. [Google Scholar] [CrossRef]
- Nadimi, M.; Brown, J.M.; Morrison, J.; Paliwal, J. Examination of wheat kernels for the presence of Fusarium damage and mycotoxins using near-infrared hyperspectral imaging. Meas. Food 2021, 4, 100011. [Google Scholar] [CrossRef]
- Wang, W.; Paliwal, J. Near-infrared spectroscopy and imaging in food quality and safety. Sens. Instrum. Food Qual. Saf. 2007, 1, 193–207. [Google Scholar] [CrossRef]
- Cárdenas-Pérez, S.; Chanona-Pérez, J.; Méndez-Méndez, J.V.; Calderón-Domínguez, G.; López-Santiago, R.; Perea-Flores, M.J.; Arzate-Vázquez, I. Evaluation of the ripening stages of apple (Golden Delicious) by means of computer vision system. Biosyst. Eng. 2017, 159, 46–58. [Google Scholar] [CrossRef]
- Li, X.; Guillermic, R.M.; Nadimi, M.; Paliwal, J.; Koksel, F. Physical and microstructural quality of extruded snacks made from blends of barley and green lentil flours. Cereal Chem. 2022, 99, 1112–1123. [Google Scholar] [CrossRef]
- Nadimi, M.; Loewen, G.; Paliwal, J. Assessment of mechanical damage to flaxseeds using radiographic imaging and tomography. Smart Agric. Technol. 2022, 2, 100057. [Google Scholar] [CrossRef]
- Sivakumar, C.; Chaudhry, M.M.A.; Nadimi, M.; Paliwal, J.; Courcelles, J. Characterization of roller and Ferkar-milled pulse flours using laser diffraction and scanning electron microscopy. Powder Technol. 2022, 409, 117803. [Google Scholar] [CrossRef]
- Nadimi, M.; Sun, D.W.; Paliwal, J. Recent applications of novel laser techniques for enhancing agricultural production. Laser Phys. 2021, 31, 053001. [Google Scholar] [CrossRef]
- Nadimi, M.; Sun, D.W.; Paliwal, J. Effect of laser biostimulation on germination of wheat. Appl. Eng. Agric. 2022, 38, 77–84. [Google Scholar] [CrossRef]
- Nadimi, M.; Loewen, G.; Bhowmik, P.; Paliwal, J. Effect of laser biostimulation on germination of sub-optimally stored flaxseeds (Linum usitatissimum). MDPI Sustain. 2022; In press. [Google Scholar]
- Tan, K.; Suk Lee, W.; Gan, H.; Wang, S. Recognising blueberry fruit of different maturity using histogram oriented gradients and colour features in outdoor scenes. Biosyst. Eng. 2018, 176, 59–72. [Google Scholar] [CrossRef]
- Mohammadi, V.; Kheiralipour, K.; Ghasemi Varnamkhasti, M. Detecting maturity of persimmon fruit based on image processing technique. Sci. Hortic. 2015, 184, 123–128. [Google Scholar] [CrossRef]
- Li, H.; Suk Lee, W.; Wang, K. Identifying blueberry fruit of different growth stages using natural outdoor color images. Comput. Electron. Agric. 2014, 106, 91–101. [Google Scholar] [CrossRef]
- Rafiq, A.; Makroo, H.A.; Hazarika, M.K. Artificial Neural Network-Based Image Analysis for Evaluation of Quality Attributes of Agricultural Produce. J. Food Process. Preserv. 2016, 40, 1010–1019. [Google Scholar] [CrossRef]
- Pourdarbani, R.; Sabzi, S.; Kalantari, D.; Karimzadeh, R.; Ilbeygi, E.; Arribas, J.I. Automatic non-destructive video estimation of maturation levels in Fuji apple (Malus Malus pumila) fruit in orchard based on colour (Vis) and spectral (NIR) data. Biosyst. Eng. 2020, 195, 136–151. [Google Scholar] [CrossRef]
- Sabzi, S.; Abbaspour-Gilandeh, Y.; García-Mateos, G.; Ruiz-Canales, A.; Molina-Martínez, J.; Arribas, J. An Automatic Non-Destructive Method for the Classification of the Ripeness Stage of Red Delicious Apples in Orchards Using Aerial Video. Agronomy 2019, 9, 84. [Google Scholar] [CrossRef]
- Gan, H.; Lee, W.S.; Alchanatis, V.; Abd-Elrahman, A. Active thermal imaging for immature citrus fruit detection. Biosyst. Eng. 2020, 198, 291–303. [Google Scholar] [CrossRef]
- Azarmdel, H.; Jahanbakhshi, A.; Mohtasebi, S.S.; Rosado Muñoz, A. Evaluation of image processing technique as an expert system in mulberry fruit grading based on ripeness level using artificial neural networks (ANNs) and support vector machine (SVM). Postharvest Biol. Technol. 2020, 166, 111201. [Google Scholar] [CrossRef]
- Septiarini, A.; Hamdani, H.; Rahmania Hatta, H.; Anwar, K. Automatic image segmentation of oil palm fruits by applying the contour-based approach. Sci. Hortic. 2020, 261, 108939. [Google Scholar] [CrossRef]
- Vadivambal, R.; Jayas, D.S. Bio-Imaging: Principles, Techniques, and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Kheiralipour, K.; Ahmadi, H.; Rajabipour, A.; Rafiee, S. Thermal Imaging, Principles, Methods and Applications, 1st ed.; Ilam University Publication: Ilam, Iran, 2018. [Google Scholar]
- Jahanbakhshi, A.; Kheiralipour, K. Evaluation of image processing technique and discriminant analysis methods in postharvest processing of carrot fruit. Food Sci. Nutr. 2020, 8, 3346–3352. [Google Scholar] [CrossRef]
- Kheiralipour, K.; Ahmadi, H.; Rajabipour, A.; Rafiee, S.; Javan-Nikkhah, M.; Jayas, D.S.; Siliveu, K.; Malihipour, A. Processing the hyperspectral images for detecting infection of pistachio kernel by R5 and KK11 isolates of Aspergillus flavus fungus. Iran. J. Biosyst. Eng. 2021, 52, 13–25. [Google Scholar] [CrossRef]
- Kheiralipour, K.; Pormah, A. Introducing new shape features for classification of cucumber fruit based on image processing technique and artificial neural networks. J. Food Process Eng. 2017, 40, e12558. [Google Scholar] [CrossRef]
- Sabzi, S.; Nadimi, M.; Abbaspour-Gilandeh, Y.; Paliwal, J. Non-Destructive Estimation of Physicochemical Properties and Detection of Ripeness Level of Apples Using Machine Vision. Int. J. Fruit Sci. 2022, 22, 628–645. [Google Scholar] [CrossRef]
- Azadnia, R.; Kheiralipour, K. Recognition of leaves of different medicinal plant species using a robust image processing algorithm and artificial neural networks classifier. J. Appl. Res. Med. Aromat. Plants 2021, 25, 100327. [Google Scholar] [CrossRef]
- Chaves-González, J.M.; Vega-Rodríguez, M.A.; Gómez-Pulido, J.A.; Sánchez-Pérez, J.M. Detecting skin in face recognition systems: A colour spaces study. Digit. Signal Process. 2010, 20, 806–823. [Google Scholar] [CrossRef]
- García-Mateos, G.; Hernández-Hernández, J.L.; Escarabajal-Henarejos, D.; Jaén-Terrones, S.; Molina-Martínez, J.M. Study and comparison of color models for automatic image analysis in irrigation management applications. Agric. Water Manag. 2015, 151, 158–166. [Google Scholar] [CrossRef]
- Khazaee, Y.; Kheiralipour, K.; Hosainpour, A.; Javadikia, H.; Paliwal, J. Development of a novel image analysis and classification algorithms to separate tubers from clods and stones. Potato Res. 2022, 65, 707–728. [Google Scholar] [CrossRef]
- Salam, S.; Kheiralipour, K.; Jian, J. Detection of Unripe Kernels and Foreign Materials in Chickpea Mixtures Using Image Processing. Agriculture 2022, 12, 995. [Google Scholar] [CrossRef]
- Gonzalez, R.; Woods, R. Digital Image Processing, 3rd ed.; Prentice-Hall: Hoboken, NJ, USA, 2007. [Google Scholar]
- Mendoza, F.; Aguilera, J. Image Classification of bananas (Musa cavendish) during ripening based on appearance features. In Proceedings of the Ninth International Congress on Engineering and Food, Montpellier, France, 7–11 March 2004. [Google Scholar]
- Lana, M.M.; Tijskens, L.M.M.; Van Kooten, O. Effects of storage temperature and stage of ripening on RGB colour aspects of fresh-cut tomato pericarp using video image analysis. J. Food Eng. 2006, 77, 871–879. [Google Scholar] [CrossRef]
- Kheiralipour, K.; Kazemi, A. A new method to determine morphological properties of fruits and vegetables by image processing technique and nonlinear multivariate modeling. Int. J. Food Prop. 2020, 23, 368–374. [Google Scholar] [CrossRef]
- Donis-González, I.R.; Guyer, D.E.; Leiva-Valenzuela, G.A.; Burns, J. Assessment of chestnut (Castanea spp.) slice quality using color images. J. Food Eng. 2012, 115, 407–414. [Google Scholar] [CrossRef]
- Kheiralipour, K. Implementation and Construction of a System for Detecting Fungal Infection of Pistachio Kernel Based on Thermal Imaging (TI) and Image Processing Technology. Ph.D. Dissertation, University of Tehran, Karaj, Iran, 2012. [Google Scholar]
- Azadnia, R.; Kheiralipour, K.; Jafarian, M. Evaluation of hawthorns maturity level by developing an automated machine learning-based algorithm. Ecol. Inform. 2022, 71, 101804. [Google Scholar] [CrossRef]
- Farokhzad, S.; Modaress Motlagh, A.; Ahmadi Moghadam, P.; Jalali Honarmand, S.; Kheiralipour, K. Application of infrared thermal imaging technique and discriminant analysis methods for non-destructive identification of fungal infection of potato tubers. J. Food Meas. Charact. 2019, 14, 88–94. [Google Scholar] [CrossRef]
- Kheiralipour, K.; Ahmadi, H.; Rajabipour, A.; Rafiee Javan-Nikkhah MJayas, D.S.; Siliveu, K. Detection of fungal infection in pistachio kernel by long-wave near-infrared hyperspectral imaging technique. Qual. Assur. Saf. Crops Foods 2015, 8, 129–135. [Google Scholar] [CrossRef]
- Kheiralipour, K.; Ahmadi, H.; Rajabipour, A.; Rafiee, S.; Javan-Nikkhah, M. Classifying healthy and fungal infected-pistachio kernel by thermal imaging technology. Int. J. Food Prop. 2015, 18, 93–99. [Google Scholar] [CrossRef]
- Williams, H.A.M.; Jones, M.H.; Nejati, M.; Seabright MJBell, J.; Penhall, N.D.; Barnett, J.J.; Duke, M.D.; Scarfe, A.J.; Ahn, H.S.; Lim, J.Y.; et al. Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms. Biosyst. Eng. 2019, 181, 140–156. [Google Scholar] [CrossRef]
- Khojastehnazhand, M.; Mohammadi, V.; Minaei, S. Maturity detection and volume estimation of apricot using image processing technique. Sci. Hortic. 2019, 251, 247–251. [Google Scholar] [CrossRef]
- Polder, G.; Van Der Heijden GW, A.M.; Young, I.T. Spectral image analysis for measuring ripeness of tomatoes. World Acad. Sci. Eng. Technol. Int. J. Comput. Inf. Eng. 2002, 45, 1155–1161. [Google Scholar] [CrossRef]
- Krishnan, R.P.; Sofiah, S.; Radzi, M. Color recognition algorithm using a neural network model in determining the ripeness of a banana. In Proceedings of the International Conference on Man-Machine Systems (ICoMMS), Batu Ferringhi, Penang, Malaysia, 11–13 October 2009; pp. 11–13. [Google Scholar]
- Shah Rizam MS, B.; Farah Yasmin, A.R.; Ahmad Ihsan, M.Y.; Shazana, K. Non-destructive watermelon ripeness determination using image processing and artificial neural network (ANN). World Acad. Sci. Eng. Technol. Int. J. Comput. Inf. Eng. 2009, 3, 332–336. [Google Scholar]
No. | Feature | Channel | Ripeness Stage. | |||
---|---|---|---|---|---|---|
Overripe | Ripe | Secondary Unripe | Initial Unripe | |||
1 | Mean | B | 0.227351 | 0.246726 | 0.228051 | 0.318771 |
2 | Skewness | L* | −0.24252 | 5.504441 | 23.80489 | 5.147078 |
3 | Kurtosis | L* | 1.076301 | 2.680921 | 4.210625 | 2.880944 |
4 | Mean | b* | 6.334246 | 2.581373 | 11.99416 | 9.648972 |
5 | Mean | Nr | 0.000231 | 0.000262 | 0.000459 | 0.000534 |
6 | Mean | Ng | 0.000225 | 0.000215 | 0.000232 | 0.000474 |
7 | Skewness | Ng | 21.3878 | 17.6356 | 5.723309 | 3.559942 |
8 | Mean | Nb | 0.000193 | 0.000213 | 0.000223 | 0.000421 |
9 | Mean | I2 | 0.025847 | 0.023206 | 0.114415 | 0.063754 |
10 | Mean | I3 | 0.008155 | −0.01009 | −0.05226 | −0.00162 |
11 | Kurtosis | I3 | 2.987824 | 2.948279 | 4.174406 | 3.320493 |
12 | Mean | Cr | 0.010891 | 0.030667 | 0.154239 | 0.052948 |
13 | Mean | Cb | −0.0408 | −0.01575 | −0.07459 | −0.07456 |
14 | Skewness | Cb | −0.3614 | −0.52836 | 0.269488 | 0.221479 |
15 | Mean | H | 0.143898 | 0.39319 | 0.247182 | 0.149145 |
16 | Mean | S | 0.183587 | 0.165916 | 0.500831 | 0.284045 |
Predicted | Overripe | Ripe | Secondary Unripe | Initial Unripe |
---|---|---|---|---|
Actual | ||||
Overripe | 39 | 0 | 0 | 1 |
Ripe | 7 | 33 | 0 | 0 |
Secondary unripe | 0 | 0 | 39 | 1 |
Initial unripe | 0 | 0 | 1 | 39 |
Predicted | Overripe | Ripe | Secondary Unripe | Initial Unripe |
---|---|---|---|---|
Actual | ||||
Overripe | 38 | 2 | 0 | 0 |
Ripe | 1 | 39 | 0 | 0 |
Secondary unripe | 0 | 0 | 39 | 1 |
Initial unripe | 0 | 0 | 0 | 40 |
No. | Structure | Mean Squared Error of Validation | Correlation Coefficient Of Test Data | Correct Classification Rate of All Data |
---|---|---|---|---|
1 | 16-2-4 | 0.06441 | 0.80368 | 75.00 |
2 | 16-3-4 | 0.02591 | 0.93764 | 96.30 |
3 | 16-4-4 | 0.00020 | 0.88903 | 97.50 |
4 | 16-5-4 | 0.00861 | 0.93359 | 97.50 |
5 | 16-6-4 | 0.01584 | 0.91826 | 97.50 |
6 | 16-7-4 | 0.01014 | 0.85928 | 98.10 |
7 | 16-8-4 | 0.02546 | 0.92715 | 98.80 |
8 | 16-9-4 | 0.00204 | 0.92087 | 98.10 |
9 | 16-10-4 | 0.01372 | 0.97779 | 100.00 |
10 | 16-11-4 | 0.19684 | 0.94592 | 98.80 |
11 | 16-12-4 | 0.00748 | 0.95115 | 99.40 |
12 | 16-13-4 | 0.00391 | 0.89191 | 99.40 |
13 | 16-14-4 | 0.01795 | 0.90738 | 100.00 |
14 | 16-15-4 | 0.01710 | 0.95211 | 100.00 |
15 | 16-16-4 | 0.01770 | 0.94989 | 99.40 |
16 | 16-17-4 | 0.00897 | 0.94868 | 98.80 |
17 | 16-18-4 | 0.01328 | 0.94509 | 98.80 |
18 | 16-19-4 | 0.00779 | 0.96164 | 98.80 |
19 | 16-20-4 | 0.01447 | 0.92076 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kheiralipour, K.; Nadimi, M.; Paliwal, J. Development of an Intelligent Imaging System for Ripeness Determination of Wild Pistachios. Sensors 2022, 22, 7134. https://doi.org/10.3390/s22197134
Kheiralipour K, Nadimi M, Paliwal J. Development of an Intelligent Imaging System for Ripeness Determination of Wild Pistachios. Sensors. 2022; 22(19):7134. https://doi.org/10.3390/s22197134
Chicago/Turabian StyleKheiralipour, Kamran, Mohammad Nadimi, and Jitendra Paliwal. 2022. "Development of an Intelligent Imaging System for Ripeness Determination of Wild Pistachios" Sensors 22, no. 19: 7134. https://doi.org/10.3390/s22197134
APA StyleKheiralipour, K., Nadimi, M., & Paliwal, J. (2022). Development of an Intelligent Imaging System for Ripeness Determination of Wild Pistachios. Sensors, 22(19), 7134. https://doi.org/10.3390/s22197134