Temperature and Humidity Sensitivity of Polymer Optical Fibre Sensors Tuned by Pre-Strain
Abstract
:1. Introduction
2. Fabrication of Bragg Grating Sensors
3. Strain Characterisation
4. Pre-Straining Procedure
5. Temperature Characterisation
6. Humidity Characterisation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pitt, G.D.; Extance, P.; Neat, R.C.; Batchelder, D.N.; Jones, R.E.; Barnett, J.A.; Pratt, R. Optical-Fibre Sensors. IEE Proc. Optoelectron. J. 1985, 132, 214–248. [Google Scholar] [CrossRef]
- Yun-Jiang, R. In-Fibre Bragg Grating Sensors. Meas. Sci. Technol. 1997, 8, 355. [Google Scholar] [CrossRef]
- Dakin, J.P. Multiplexed and Distributed Optical Fibre Sensor Systems. J. Phys. E: Sci. Instr. 1987, 20, 954. [Google Scholar] [CrossRef]
- Mizuno, Y.; Theodosiou, A.; Kalli, K.; Liehr, S.; Lee, H.; Nakamura, K. Distributed Polymer Optical Fiber Sensors: A Review and Outlook. Photonics Res. 2021, 9, 1719–1733. [Google Scholar] [CrossRef]
- Othonos, A.; Kalli, K. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing; Artech House Optoelectronics Library; Artech House: Norwood, MA, USA, 1999; ISBN 9780890063446. [Google Scholar]
- Kalli, K.; Dobb, H.L.; Webb, D.J.; Carroll, K.; Komodromos, M.; Themistos, C.; Peng, G.D.; Fang, Q.; Boyd, I.W. Electrically Tunable Bragg Gratings in Single-Mode Polymer Optical Fiber. Opt. Lett. 2007, 32, 214–216. [Google Scholar] [CrossRef]
- Othonos, A.; Kalli, K.; Pureur, D.; Mugnier, A. Fibre Bragg Gratings. In Wavelength Filters in Fibre Optics; Springer: Berlin/Heidelberg, Germany, 2006; Volume 123, pp. 189–269. ISBN 978-3-540-31770-8. [Google Scholar]
- Webb, D.J. Fibre Bragg Grating Sensors in Polymer Optical Fibres. Meas. Sci. Technol. 2015, 26, 92004. [Google Scholar] [CrossRef]
- Large, M.C.J.; Moran, J.H.; Ye, L. The Role of Viscoelastic Properties in Strain Testing Using Microstructured Polymer Optical Fibres (MPOF). Meas. Sci. Technol. 2009, 20, 34014. [Google Scholar] [CrossRef]
- Inaudi, D.; Glisic, B. Fibre Optic Methods for Structural Health Monitoring; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 9780470517802. [Google Scholar]
- Leal-Junior, A.; Theodosiou, A.; Díaz, C.; Marques, C.; Pontes, M.J.; Kalli, K.; Frizera-Neto, A. Fiber Bragg Gratings in CYTOP Fibers Embedded in a 3D-Printed Flexible Support for Assessment of Human–Robot Interaction Forces. Materials 2018, 11, 2305. [Google Scholar] [CrossRef]
- Zhang, W.; Webb, D.J.; Peng, G.D. Investigation Into Time Response of Polymer Fiber Bragg Grating Based Humidity Sensors. J. Lightwave Technol. 2012, 30, 1090–1096. [Google Scholar] [CrossRef]
- Zhang, W.; Webb, D.; Peng, G. Polymer Optical Fiber Bragg Grating Acting as an Intrinsic Biochemical Concentration Sensor. Opt. Lett. 2012, 37, 1370–1372. [Google Scholar] [CrossRef] [Green Version]
- van den Boom, H.P.A.; Li, W.; van Bennekom, P.K.; Monroy, I.T.; Khoe, G.-D. High-Capacity Transmission over Polymer Optical Fiber. J. Sel. Top. Quantum Electron. 2001, 7, 461–470. [Google Scholar] [CrossRef]
- Lacraz, A.; Theodosiou, A.; Kalli, K. Femtosecond Laser Inscribed Bragg Grating Arrays in Long Lengths of Polymer Optical Fibres; a Route to Practical Sensing with POF. Electron. Lett. 2016, 52, 1626–1627. [Google Scholar] [CrossRef]
- Theodosiou, A.; Kalli, K. Recent Trends and Advances of Fibre Bragg Grating Sensors in CYTOP Polymer Optical Fibres. Opt. Fiber Technol. 2020, 54, 102079. [Google Scholar] [CrossRef]
- Yamamoto, K.; Ogawa, G. Structure Determination of the Amorphous Perfluorinated Homopolymer: Poly[Perfluoro(4-Vinyloxyl-1-Butene)]. J. Fluor. Chem. 2005, 126, 1403–1408. [Google Scholar] [CrossRef]
- Saito, S.; Nakajima, T. Glass Transition in Polymers. J. Appl. Polym. Sci. 1959, 2, 93–99. [Google Scholar] [CrossRef]
- Yeh, G.S.Y.; Hosemann, R.; Loboda-Čačković, J.; Čačković, H. Annealing Effects of Polymers and Their Underlying Molecular Mechanisms. Polym. J. 1976, 17, 309–318. [Google Scholar] [CrossRef]
- Bosc, D.; Toinen, C. Tensile Mechanical-Properties and Reduced Internal-Stresses of Polymer Optical-Fiber. Polym. Compos. 1993, 14, 410–413. [Google Scholar] [CrossRef]
- Schmidt-Rohr, K.; Kulik, A.S.; Beckham, H.W.; Ohlemacher, A.; Pawelzik, U.; Boeffel, C.; Spiess, H.W. Molecular Nature of the Beta-Relaxation in Poly(Methyl Methacrylate) Investigated by Multidimensional NMR. Macromolecules 1994, 27, 4733–4745. [Google Scholar] [CrossRef]
- Carroll, K.E.; Zhang, C.; Webb, D.J.; Kalli, K.; Argyros, A.; Large, M.C. Thermal Response of Bragg Gratings in PMMA Microstructured Optical Fibers. Opt. Express 2007, 15, 8844–8850. [Google Scholar] [CrossRef]
- Johnson, I.P.; Webb, D.J.; Kalli, K.; Large, M.C.; Argyros, A. Multiplexed FBG Sensor Recorded in Multimode Microstructured Polymer Optical Fibre. In Proceedings of the SPIE, Photonic Crystal Fibers IV, Brussels, Belgium, 12–16 April 2010; Volume 7714, pp. 100–109. [Google Scholar]
- Pospori, A.; Marques, C.A.F.; Sagias, G.; Lamela-Rivera, H.; Webb, D.J. Novel Thermal Annealing Methodology for Permanent Tuning Polymer Optical Fiber Bragg Gratings to Longer Wavelengths. Opt Express 2018, 26, 1411–1421. [Google Scholar] [CrossRef]
- Pospori, A.; Marques, C.A.F.; Sáez-Rodríguez, D.; Nielsen, K.; Bang, O.; Webb, D.J. Thermal and Chemical Treatment of Polymer Optical Fiber Bragg Grating Sensors for Enhanced Mechanical Sensitivity. Opt. Fiber Technol. 2017, 36, 68–74. [Google Scholar] [CrossRef]
- Pospori, A.; Marques, C.A.F.; Zubel, M.G.; Sáez-Rodríguez, D.; Nielsen, K.; Bang, O.; Webb, D.J. Annealing Effects on Strain and Stress Sensitivity of Polymer Optical Fibre Based Sensors. In Proceedings of the SPIE, Micro-Structured and Specialty Optical Fibres IV, Brussels, Belgium, 3–7 April 2016; Volume 9886, pp. 126–132. [Google Scholar]
- Tribone, J.J.; O’Reilly, J.M.; Greener, J. Analysis of Enthalpy Relaxation in Poly(Methyl Methacrylate): Effects of Tacticity, Deuteration, and Thermal History. Macromolecules 1986, 19, 1732–1739. [Google Scholar] [CrossRef]
- Stajanca, P.; Cetinkaya, O.; Schukar, M.; Mergo, P.; Webb, D.J.; Krebber, K. Molecular Alignment Relaxation in Polymer Optical Fibers for Sensing Applications. Opt. Fiber Technol. 2016, 28, 11–17. [Google Scholar] [CrossRef]
- Zhang, W.; Webb, D.J. Humidity Responsivity of Poly(Methyl Methacrylate)-Based Optical Fiber Bragg Grating Sensors. Opt. Lett. 2014, 39, 3026–3029. [Google Scholar] [CrossRef]
- Woyessa, G.; Pedersen, J.K.M.; Nielsen, K.; Bang, O. Enhanced Pressure and Thermal Sensitivity of Polymer Optical Fiber Bragg Grating Sensors. Opt Laser Technol 2020, 130, 106357. [Google Scholar] [CrossRef]
- Baschek, G.; Hartwig, G.; Zahradnik, F. Effect of Water Absorption in Polymers at Low and High Temperatures. Polymer 1999, 40, 3433–3441. [Google Scholar] [CrossRef]
- Zhang, W.; Webb, D.J.; Peng, G.D. Nonlinear Response in Polymer Optical Fibre Bragg Grating Based Sensors. In Proceedings of the SPIE, OFS2012 22nd International Conference on Optical Fiber Sensors, Beijing, China, 14–19 October 2012; Volume 8421, pp. 764–767. [Google Scholar]
- Zhang, W.; Webb, D.J.; Peng, G.-D. Enhancing the Sensitivity of Poly (Methyl Methacrylate) Based Optical Fiber Bragg Grating Temperature Sensors. Opt. Express 2015, 40, 4046–4049. [Google Scholar] [CrossRef]
- Zheng, Y.; Bremer, K.; Roth, B. Investigating the Strain, Temperature and Humidity Sensitivity of a Multimode Graded-Index Perfluorinated Polymer Optical Fiber with Bragg Grating. Sensors 2018, 18, 1436. [Google Scholar] [CrossRef]
- CYTOP. Available online: https://www.Agcce.com/Cytop-Technical-Information (accessed on 21 August 2022).
- Pospori, A.; Ioannou, A.; Kalli, K. Pre-Strain Effects on CYTOP Fibre Bragg Grating Temperature Sensors. In Proceedings of the SPIE, Micro-Structured and Specialty Optical Fibres VII, Strasbourg, France, 3–7 April 2022; Volume 12140, pp. 119–124. [Google Scholar]
- Theodosiou, A.; Lacraz, A.; Stassis, A.; Koutsides, C.; Komodromos, M.; Kalli, K. Plane-by-Plane Femtosecond Laser Inscription Method for Single-Peak Bragg Gratings in Multimode CYTOP Polymer Optical Fiber. J. Light. Technol. 2017, 35, 5404–5410. [Google Scholar] [CrossRef]
- Smith, G.N.; Kalli, K.; Sugden, K. Advances in Femtosecond Micromachining and Inscription of Micro and Nano Photonic Devices. Front. Guided Wave Opt. Optoelectron. 2010, 674. [Google Scholar] [CrossRef] [Green Version]
- Theodosiou, A.; Lacraz, A.; Polis, M.; Kalli, K.; Tsangari, M.; Stassis, A.; Komodromos, M. Modified Fs-Laser Inscribed FBG Array for Rapid Mode Shape Capture of Free-Free Vibrating Beams. Photon. Technol. Lett. 2016, 28, 1509–1512. [Google Scholar] [CrossRef]
- Shardakov, I.N.; Trufanov, A.N. Identification of the Temperature Dependence of the Thermal Expansion Coefficient of Polymers. Polymers 2021, 13, 3035. [Google Scholar] [CrossRef]
Sensor | Bragg Wavelength (nm) | Pre-Strain (%) |
---|---|---|
POFBG 1 | 1526.62 | 0.50 |
POFBG 2 | 1550.14 | 0.10 |
POFBG 3 | 1564.79 | 0.04 |
POFBG 4 | 1576.53 | 0.00 |
Sensor | Increasing Temperature | Decreasing Temperature |
---|---|---|
POFBG 1 (0.5% pre-strain) | −70.0 ± 1.4 pm/°C | −73.6 ± 1.6 pm/°C |
POFBG 4 (0% pre-strain) | 21.5 ± 0.3 pm/°C | 18.0 ± 0.1 pm/°C |
Silica FBG (0% pre-strain) | 12.6 ± 0.2 pm/°C | 12.6 ± 0.2 pm/°C |
Sensor | Increasing Humidity | Decreasing Humidity |
---|---|---|
POFBG 1 (0.5% pre-strain) | 0.7 ± 0.2 pm/%RH | 0.3 ± 0.2 pm/%RH |
POFBG 2 (0.1% pre-strain) | 3.9 ± 0.3 pm/%RH | 3.3 ± 0.2 pm/%RH |
POFBG 3 (0.04% pre-strain) | 9.0 ± 0.5 pm/%RH | 10.0 ± 0.3 pm/%RH |
POFBG 4 (0% pre-strain) | 11.7 ± 0.2 pm/%RH | 11.0 ± 0.3 pm/%RH |
Silica FBG (0% pre-strain) | 1.3 ± 0.2 pm/%RH | 1.3 ± 0.2 pm/%RH |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pospori, A.; Ioannou, A.; Kalli, K. Temperature and Humidity Sensitivity of Polymer Optical Fibre Sensors Tuned by Pre-Strain. Sensors 2022, 22, 7233. https://doi.org/10.3390/s22197233
Pospori A, Ioannou A, Kalli K. Temperature and Humidity Sensitivity of Polymer Optical Fibre Sensors Tuned by Pre-Strain. Sensors. 2022; 22(19):7233. https://doi.org/10.3390/s22197233
Chicago/Turabian StylePospori, Andreas, Andreas Ioannou, and Kyriacos Kalli. 2022. "Temperature and Humidity Sensitivity of Polymer Optical Fibre Sensors Tuned by Pre-Strain" Sensors 22, no. 19: 7233. https://doi.org/10.3390/s22197233
APA StylePospori, A., Ioannou, A., & Kalli, K. (2022). Temperature and Humidity Sensitivity of Polymer Optical Fibre Sensors Tuned by Pre-Strain. Sensors, 22(19), 7233. https://doi.org/10.3390/s22197233