Artificial Intelligence-Based Detection of Human Embryo Components for Assisted Reproduction by In Vitro Fertilization
Abstract
:1. Introduction
2. Background and Related Work
3. Proposed Methodology
3.1. Overview of Proposed Architecture
- 1.
- Fewer convolutional layers used in combination with depth-wise separable convolutions in a two-stream custom design for accurate embryo component detection.
- 2.
- ECS-Net is empowered with dense connectivity that lets the network perform better with a shallow architecture without using any preprocessing schemes for image enhancement, where just minor morphological operations are used to clean the boundaries of the detected areas.
- 3.
- The proposed ECS-Net is providing noticeably good segmentation performance with only 2.84 million trainable parameters.
3.2. Working Principle of Proposed ECS-Net
3.3. ECS-Net Pixel Classification Block
4. Experimental Results
4.1. Dataset and Augmentation
4.2. Evaluation Criteria
- 1.
- True Positive (TP): is the pixel that belongs to the embryo component in both the predicted mask and expert label mask;
- 2.
- False Negative (FN): is the pixel that is incorrectly predicted as a background pixel where it is actually an embryo component pixel in the expert label mask;
- 3.
- False Positive (FP): is the pixel which is incorrectly predicted as embryo component pixel, where actually it belongs to a background pixel in expert label mask.
4.3. Comparison with State-of-the-Art
4.4. Limitation of the Proposed Method
5. Embryological Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Purkayastha, N.; Sharma, H. Prevalence and potential determinants of primary infertility in India: Evidence from Indian demographic health survey. Clin. Epidemiol. Glob. Health 2021, 9, 162–170. [Google Scholar] [CrossRef]
- Van Der Poel, S.Z. Historical walk: The HRP special programme and infertility. Gynecol. Obstet. Investig. 2012, 74, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Jejeebhoy, S.J. Infertility in India: Levels, patterns and consequences-Priorities for social science research. J. Fam. Welf. 1998, 44, 15–24. [Google Scholar]
- Smith, J.; Velez, M.P.; Dayan, N. Infertility, Infertility Treatment, and Cardiovascular Disease: An Overview. Can. J. Cardiol. 2021, 37, 1959–1968. [Google Scholar] [CrossRef]
- Dadhwal, V.; Choudhary, V.; Perumal, V.; Bhattacharya, D. Depression, anxiety, quality of life and coping in women with infertility: A cross-sectional study from India. Int. J. Gynecol. Obstet. 2021, 3, 671–678. [Google Scholar] [CrossRef]
- Choe, J.; Archer, J.S.; Shanks, A.L. Vitro Fertilization; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Zhao, M.; Xu, M.; Li, H.; Alqawasmeh, O.; Chung, J.P.W.; Li, T.C.; Lee, T.L.; Tang, P.M.K.; Chan, D.Y.L. Application of convolutional neural network on early human embryo segmentation during in vitro fertilization. J. Cell. Mol. Med. 2021, 25, 2633–2644. [Google Scholar] [CrossRef]
- Cutting, R. Single embryo transfer for all. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 53, 30–37. [Google Scholar] [CrossRef]
- Wu, Y.G.; Lazzaroni-Tealdi, E.; Wang, Q.; Zhang, L.; Barad, D.H.; Kushnir, V.A.; Darmon, S.K.; Albertini, D.F.; Gleicher, N. Different effectiveness of closed embryo culture system with time-lapse imaging (EmbryoScopeTM) in comparison to standard manual embryology in good and poor prognosis patients: A prospectively randomized pilot study. Reprod. Biol. Endocrinol. 2016, 14, 49. [Google Scholar] [CrossRef]
- Lubis, H.P.; Halim, B. Human blastocyst formation and development. Embryol.-Theory Pract. 2018, 5, 1–15. [Google Scholar]
- Shi, D.; Xu, J.; Zhang, M.; Niu, W.; Shi, H.; Yao, G.; Li, Y.; Zhang, N.; Sun, Y. Association between the quality of inner cell mass and first trimester miscarriage after single blastocyst transfer. Reprod. Biol. Endocrinol. 2020, 18, 1–9. [Google Scholar] [CrossRef]
- Richter, K.S.; Harris, D.C.; Daneshmand, S.T.; Shapiro, B.S. Quantitative grading of a human blastocyst: Optimal inner cell mass size and shape. Fertil. Steril. 2001, 76, 1157–1167. [Google Scholar] [CrossRef]
- Battaglia, R.; Palini, S.; Vento, M.; La Ferlita, A.; Lo Faro, M.; Caroppo, E.; Borzì, P.; Falzone, L.; Barbagallo, D.; Ragusa, M.; et al. Identification of extracellular vesicles and characterization of miRNA expression profiles in human blastocoel fluid. Sci. Rep. 2019, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Y.; Yu, Y.; Zhang, X.W. Overall blastocyst quality, trophectoderm grade, and inner cell mass grade predict pregnancy outcome in euploid blastocyst transfer cycles. Chin. Med. J. 2018, 131, 1261–1267. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ang, W.T. Automatic dissection position selection for cleavage-stage embryo biopsy. IEEE Trans. Biomed. Eng. 2015, 63, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Sounderajah, V.; Martin, G.; Ting, D.S.; Karthikesalingam, A.; King, D.; Ashrafian, H.; Darzi, A. Diagnostic accuracy of deep learning in medical imaging: A systematic review and meta-analysis. NPJ Digit. Med. 2021, 4, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Niu, J.; Liu, X.; Chen, Z.; Tang, S.; Yu, S. A survey on incorporating domain knowledge into deep learning for medical image analysis. Med. Image Anal. 2021, 69, 101985. [Google Scholar] [CrossRef]
- Razzak, I.; Shoukat, G.; Naz, S.; Khan, T.M. Skin Lesion Analysis Toward Accurate Detection of Melanoma using Multistage Fully Connected Residual Network. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
- Ulku, I.; Akagündüz, E. A survey on deep learning-based architectures for semantic segmentation on 2d images. Appl. Artif. Intell. 2022, 1, 1–45. [Google Scholar] [CrossRef]
- Minaee, S.; Boykov, Y.Y.; Porikli, F.; Plaza, A.J.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 7, 3523–3542. [Google Scholar] [CrossRef]
- Siddique, N.; Paheding, S.; Elkin, C.P.; Devabhaktuni, V. U-net and its variants for medical image segmentation: A review of theory and applications. IEEE Access 2021, 9, 82031–82057. [Google Scholar] [CrossRef]
- Coticchio, G.; Fiorentino, G.; Nicora, G.; Sciajno, R.; Cavalera, F.; Bellazzi, R.; Garagna, S.; Borini, A.; Zuccotti, M. Cytoplasmic movements of the early human embryo: Imaging and artificial intelligence to predict blastocyst development. Reprod. Biomed. Online 2021, 42, 521–528. [Google Scholar] [CrossRef]
- Sawada, Y.; Sato, T.; Nagaya, M.; Saito, C.; Yoshihara, H.; Banno, C.; Matsumoto, Y.; Matsuda, Y.; Yoshikai, K.; Sawada, T.; et al. Evaluation of artificial intelligence using time-lapse images of IVF embryos to predict live birth. Reprod. Biomed. Online 2021, 43, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Au, J.; Saeedi, P.; Havelock, J. Automatic segmentation of trophectoderm in microscopic images of human blastocysts. IEEE Trans. Biomed. Eng. 2014, 62, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Kheradmand, S.; Singh, A.; Saeedi, P.; Au, J.; Havelock, J. Inner cell mass segmentation in human HMC embryo images using fully convolutional network. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 1752–1756. [Google Scholar]
- Rad, R.M.; Saeedi, P.; Au, J.; Havelock, J. Multi-resolutional ensemble of stacked dilated u-net for inner cell mass segmentation in human embryonic images. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 3518–3522. [Google Scholar]
- Rad, R.M.; Saeedi, P.; Au, J.; Havelock, J. Human Blastocyst’s Zona Pellucida segmentation via boosting ensemble of complementary learning. Inf. Med. Unlocked 2018, 13, 112–121. [Google Scholar] [CrossRef]
- Rad, R.M.; Saeedi, P.; Au, J.; Havelock, J. Trophectoderm segmentation in human embryo images via inceptioned U-Net. Med. Image Anal. 2020, 62, 101612. [Google Scholar] [CrossRef] [PubMed]
- Kheradmand, S.; Saeedi, P.; Bajic, I. Human blastocyst segmentation using neural network. In Proceedings of the 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver, Canada, 15–18 May 2016; pp. 1–4. [Google Scholar]
- Saeedi, P.; Yee, D.; Au, J.; Havelock, J. Automatic identification of human blastocyst components via texture. IEEE Trans. Biomed. Eng. 2017, 64, 2968–2978. [Google Scholar]
- Rad, R.M.; Saeedi, P.; Au, J.; Havelock, J. BLAST-NET: Semantic segmentation of human blastocyst components via cascaded atrous pyramid and dense progressive upsampling. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 1865–1869. [Google Scholar]
- Dimitriadis, I.; Zaninovic, N.; Badiola, A.C.; Bormann, C.L. Artificial intelligence in the embryology laboratory: A review. Reprod. Biomed. Online 2021, 3, 435–448. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Jorge Cardoso, M. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Berlin/Heidelberg, Germany, 2017; pp. 240–248. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Iglovikov, V.; Shvets, A. Ternausnet: U-net with vgg11 encoder pre-trained on imagenet for image segmentation. arXiv 2018, arXiv:1801.05746. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern ecognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
ECS-Net (Proposed) | SegNet [34] | UNet [35] |
---|---|---|
1. The shallow decoder is different from encoder which overall reduced number of trainable parameters | The decoder is same as encoder (doubles the number of trainable parameters) | The decoder is same as encoder (doubles the number of trainable parameters). |
2. Overall 10 convolutions are used | Overall 26 convolution layers | Overall 23 convolutions |
3. Internal and external dense connectivity is used | No connectivity is used between layers | External dense connectivity is used |
4. Three transposed convolutions are used for upsampling | Unpooling layers are used for upsampling | Four up-convolutions are used for upsampling |
5. 2.84 million trainable parameters | 29.4 million training parameters | 31.03 million trainable parameters |
Training Hyper-Parameter | Value |
---|---|
Solver | Adam [37] |
Initial-learning rate (ILR) | 0.001 |
Normalization | Global L2 |
Iterations | 4100 |
Mini-batch size | 12 |
Image shuffling | Yes |
Method | ICM | BC | TE | ZP | Background | Mean Jaccard | Parameters |
---|---|---|---|---|---|---|---|
U-Net baseline [35] | 79.03 | 79.41 | 75.06 | 79.32 | 94.04 | 81.37 | 31.03 M |
TernausNet [38] | 77.58 | 78.61 | 76.16 | 80.24 | 94.50 | 81.42 | 10.0 M |
PSP-Net [39] | 78.28 | 79.26 | 74.83 | 80.57 | 94.60 | 81.51 | 35 M |
DeepLab-V3 [40] | 80.60 | 78.35 | 73.98 | 80.84 | 94.49 | 81.65 | 40.0 M |
Blast-Net [31] | 81.07 | 80.79 | 76.52 | 81.15 | 94.74 | 82.85 | 25.0 M |
ECS-Net (Proposed) | 85.26 | 88.41 | 78.43 | 85.34 | 94.87 | 86.46 | 2.83 M |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mushtaq, A.; Mumtaz, M.; Raza, A.; Salem, N.; Yasir, M.N. Artificial Intelligence-Based Detection of Human Embryo Components for Assisted Reproduction by In Vitro Fertilization. Sensors 2022, 22, 7418. https://doi.org/10.3390/s22197418
Mushtaq A, Mumtaz M, Raza A, Salem N, Yasir MN. Artificial Intelligence-Based Detection of Human Embryo Components for Assisted Reproduction by In Vitro Fertilization. Sensors. 2022; 22(19):7418. https://doi.org/10.3390/s22197418
Chicago/Turabian StyleMushtaq, Abeer, Maria Mumtaz, Ali Raza, Nema Salem, and Muhammad Naveed Yasir. 2022. "Artificial Intelligence-Based Detection of Human Embryo Components for Assisted Reproduction by In Vitro Fertilization" Sensors 22, no. 19: 7418. https://doi.org/10.3390/s22197418
APA StyleMushtaq, A., Mumtaz, M., Raza, A., Salem, N., & Yasir, M. N. (2022). Artificial Intelligence-Based Detection of Human Embryo Components for Assisted Reproduction by In Vitro Fertilization. Sensors, 22(19), 7418. https://doi.org/10.3390/s22197418