Automatic Modulation Recognition Based on the Optimized Linear Combination of Higher-Order Cumulants
Abstract
:1. Introduction
1.1. Motivation of the Research
1.2. Contribution of the Research
1.3. Structure of the Article
2. Related Work
3. Proposed System Model
- Parameter extraction (HOCs);
- Super features (optimal weight finder);
- Recognizer (K-nearest neighbor).
4. Proposed AMR Algorithm
- (i)
- Feature extraction;
- (ii)
- Super cumulant feature;
- (iii)
- Recognizer.
4.1. Feature Extraction
4.2. Super Cumulant Features
Algorithm 1: GA-Based Optimal Weight Finder. |
4.3. KNN Recognizer
- Load training and test data;super feature cumulants are the dataset.
- Choose K, i.e., the data points that are closest to it; the chosen value of K is 5 in this research.
- Perform the following for each data point:
- Measure the distance between each row of training data and the test data; the distance is calculated using the Euclidean distance formula, as in Equation (16):
- Distance values are sorted in increasing order.
- Select the first K rows of the sorted array.
- The most prevalent class among these rows will now be used to determine the class for each test point.
- Stoppage criterion.
Algorithm 2: Proposed AMR Algorithm. |
5. Simulation Results and Analysis
5.1. Performance Analysis on the AWGN Channel
5.2. Performance Analysis on the Rayleigh Fading Channel
5.3. Performance Comparison on the AWGN and Rayleigh Fading Channels
5.4. Comparison with Existing State-of-the-Art Techniques
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, M.; Khan, W.U.; Ihsan, A.; Li, X.; Li, J.; Tsiftsis, T.A. Backscatter sensors communication for 6G low-powered NOMA-enabled IoT networks under imperfect SIC. arXiv 2022, arXiv:2109.12711. [Google Scholar] [CrossRef]
- Mahmood, A.; Hong, Y.; Ehsan, M.K.; Mumtaz, S. Optimal resource allocation and task segmentation in iot enabled mobile edge cloud. IEEE Trans. Veh. Technol. 2021, 70, 13294–13303. [Google Scholar] [CrossRef]
- Khan, W.U.; Ihsan, A.; Nguyen, T.N.; Javed, M.A.; Ali, Z. NOMA-enabled Backscatter Communications for Green Transportation in Automotive-Industry 5.0. IEEE Trans. Ind. Inform. 2022, 1. [Google Scholar] [CrossRef]
- Mahmood, A.; Ahmed, A.; Naeem, M.; Amirzada, M.R.; Al-Dweik, A. Weighted utility aware computational overhead minimization of wireless power mobile edge cloud. Comput. Commun. 2022, 190, 178–189. [Google Scholar] [CrossRef]
- Mahmood, A.; Ahmed, A.; Naeem, M.; Hong, Y. Partial offloading in energy harvested mobile edge computing: A direct search approach. IEEE Access 2020, 8, 36757–36763. [Google Scholar] [CrossRef]
- Usman, M.; Lee, J.A. AMC-IoT: Automatic modulation classification using efficient convolutional neural networks for low powered IoT devices. In Proceedings of the International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 21–23 October 2020; pp. 288–293. [Google Scholar]
- Khan, W.U.; Li, X.; Ihsan, A.; Ali, Z.; Elhalawany, B.M.; Sidhu, G.A.S. Energy efficiency maximization for beyond 5G NOMA-enabled heterogeneous networks. Peer-Peer Netw. Appl. 2021, 14, 3250–3264. [Google Scholar] [CrossRef]
- Tanveer, M.; Khan, W.U.; Nebhen, J.; Li, X.; Zeng, M.; Dobre, O.A. An enhanced spectrum reservation framework for heterogeneous users in CR-enabled IoT networks. IEEE Wirel. Commun. Lett. 2021, 10, 2504–2508. [Google Scholar]
- Khan, W.U.; Jamshed, M.A.; Lagunas, E.; Chatzinotas, S.; Li, X.; Ottersten, B. Energy Efficiency Optimization for Backscatter Enhanced NOMA Cooperative V2X Communications Under Imperfect CSI. IEEE Trans. Intell. Transp. Syst. 2022, 1–12. [Google Scholar] [CrossRef]
- Yu, S.; Khan, W.U.; Zhang, X.; Liu, J. Optimal power allocation for NOMA-enabled D2D communication with imperfect SIC decoding. Phys. Commun. 2021, 46, 101296. [Google Scholar] [CrossRef]
- Ali, Z.; Lagunas, E.; Mahmood, A.; Asif, M.; Ihsan, A.; Chatzinotas, S.; Ottersten, B.; Dobre, O.A. Rate Splitting Multiple Access for Next Generation Cognitive Radio Enabled LEO Satellite Networks. arXiv 2022, arXiv:2208.03705. [Google Scholar]
- Jameel, F.; Khan, W.U.; Kumar, N.; Jäntti, R. Efficient Power-Splitting and Resource Allocation for Cellular V2X Communications. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3547–3556. [Google Scholar] [CrossRef]
- Khan, W.U.; Lagunas, E.; Ali, Z.; Javed, M.A.; Ahmed, M.; Chatzinotas, S.; Ottersten, B.; Popovski, P. Opportunities for physical layer security in UAV communication enhanced with intelligent reflective surfaces. arXiv 2022, arXiv:2203.16907. [Google Scholar]
- Ihsan, A.; Chen, W.; Asif, M.; Khan, W.U.; Li, J. Energy-efficient IRS-aided NOMA beamforming for 6G wireless communications. arXiv 2022, arXiv:2203.16099. [Google Scholar]
- Shome, D.; Waqar, O.; Khan, W.U. Federated learning and next generation wireless communications: A survey on bidirectional relationship. Trans. Emerg. Telecommun. Technol. 2022, 33, e4458. [Google Scholar] [CrossRef]
- Khan, W.U.; Ali, Z.; Lagunas, E.; Chatzinotas, S.; Ottersten, B. Rate Splitting Multiple Access for Cognitive Radio GEO-LEO Co-Existing Satellite Networks. arXiv 2022, arXiv:2208.02924. [Google Scholar]
- Khan, W.U.; Lagunas, E.; Mahmood, A.; Chatzinotas, S.; Ottersten, B. When RIS meets geo satellite communications: A new optimization framework in 6G. arXiv 2022, arXiv:2202.00497. [Google Scholar]
- Hasan, T.; Malik, J.; Bibi, I.; Khan, W.U.; Al-Wesabi, F.N.; Dev, K.; Huang, G. Securing industrial internet of things against botnet attacks using hybrid deep learning approach. IEEE Trans. Netw. Sci. Eng. 2022. [Google Scholar] [CrossRef]
- Malik, J.; Akhunzada, A.; Bibi, I.; Imran, M.; Musaddiq, A.; Kim, S.W. Hybrid deep learning: An efficient reconnaissance and surveillance detection mechanism in SDN. IEEE Access 2020, 8, 134695–134706. [Google Scholar] [CrossRef]
- Ali, A.; Yangyu, F. {k}-Sparse autoencoder-based automatic modulation classification with low complexity. IEEE Commun. Lett. 2017, 21, 2162–2165. [Google Scholar] [CrossRef]
- Malik, J.; Akhunzada, A.; Bibi, I.; Talha, M.; Jan, M.A.; Usman, M. Security-aware data-driven intelligent transportation systems. IEEE Sens. J. 2020, 21, 15859–15866. [Google Scholar] [CrossRef]
- Krayani, A.; Alam, A.S.; Calipari, M.; Marcenaro, L.; Nallanathan, A.; Regazzoni, C. Automatic Modulation Classification in Cognitive-IoT Radios using Generalized Dynamic Bayesian Networks. In Proceedings of the 7th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 14 June–31 July 2021; pp. 235–240. [Google Scholar]
- Sarfraz, M.; Alam, S.; Ghauri, S.A.; Mahmood, A.; Akram, M.N.; Rehman, M.; Sohail, M.F.; Kebedew, T.M. Random Graph-Based M-QAM Classification for MIMO Systems. Wirel. Commun. Mob. Comput. 2022, 2022, 9419764. [Google Scholar] [CrossRef]
- Muhammad, N.B.; Sarfraz, M.; Ghauri, S.A.; Masood, S. Mathematical Modelling of Engineering Problems. IIETA 2021, 8, 575–582. [Google Scholar]
- Wu, Z.; Zhou, S.; Yin, Z.; Ma, B.; Yang, Z. Robust automatic modulation classification under varying noise conditions. IEEE Access 2017, 5, 19733–19741. [Google Scholar] [CrossRef]
- Moldovanu, S.; Damian Michis, F.A.; Biswas, K.C.; Culea-Florescu, A.; Moraru, L. Skin Lesion Classification Based on Surface Fractal Dimensions and Statistical Color Cluster Features Using an Ensemble of Machine Learning Techniques. Cancers 2021, 13, 5256. [Google Scholar] [CrossRef]
- Ebrahimzadeh, A.; Ghazalian, R. Blind digital modulation classification in software radio using the optimized classifier and feature subset selection. Eng. Appl. Artif. Intell. 2011, 24, 50–59. [Google Scholar] [CrossRef]
- Bibi, I.; Akhunzada, A.; Malik, J.; Ahmed, G.; Raza, M. An effective Android ransomware detection through multi-factor feature filtration and recurrent neural network. In Proceedings of the UK/China Emerging Technologies (UCET), Glasgow, UK, 21–22 August 2019; pp. 1–4. [Google Scholar]
- Bibi, I.; Akhunzada, A.; Malik, J.; Iqbal, J.; Musaddiq, A.; Kim, S. A dynamic DL-driven architecture to combat sophisticated Android malware. IEEE Access 2020, 8, 129600–129612. [Google Scholar] [CrossRef]
- Bibi, I.; Akhunzada, A.; Malik, J.; Khan, M.K.; Dawood, M. Secure Distributed Mobile Volunteer Computing with Android. ACM Trans. Internet Technol. (TOIT) 2021, 22, 1–21. [Google Scholar] [CrossRef]
- Jiang, K.; Qin, X.; Zhang, J.; Wang, A. Modulation Recognition of Communication Signal Based on Convolutional Neural Network. Symmetry 2021, 13, 2302. [Google Scholar] [CrossRef]
- Ge, Z.; Jiang, H.; Guo, Y.; Zhou, J. Accuracy Analysis of Feature-Based Automatic Modulation Classification via Deep Neural Network. Sensors 2021, 21, 8252. [Google Scholar] [CrossRef]
- Liu, K.; Gao, W.; Huang, Q. Automatic modulation recognition based on a DCN-BiLSTM network. Sensors 2021, 21, 1577. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhao, P.; Li, Y.; Wang, H.; Yang, Y. Spectrum interference-based two-level data augmentation method in deep learning for automatic modulation classification. Neural Comput. Appl. 2021, 33, 7723–7745. [Google Scholar] [CrossRef]
- Zhang, T.; Shuai, C.; Zhou, Y. Deep learning for robust automatic modulation recognition method for IoT applications. IEEE Access 2020, 8, 117689–117697. [Google Scholar] [CrossRef]
- Ali, A.K.; Erçelebi, E. Automatic modulation classification using different neural network and PCA combinations. Expert Syst. Appl. 2021, 178, 114931. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Y.; Wang, B.; Zhang, L.; Chen, W. Automatic Modulation Classification based on Wiener filter preprocessing and Cumulants. In Proceedings of the IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 11–13 December 2020; Volume 9, pp. 1056–1062. [Google Scholar]
- Zhao, X.; Zhou, X.; Xiong, J.; Li, F.; Wang, L. Automatic modulation recognition based on multi-dimensional feature extraction. In Proceedings of the International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 21–23 October 2020; pp. 823–828. [Google Scholar]
- Chen, Y.; Shao, W.; Liu, J.; Yu, L.; Qian, Z. Automatic modulation classification scheme based on LSTM with random erasing and attention mechanism. IEEE Access 2020, 8, 154290–154300. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, J.; Zhang, X. Automatic modulation classification based on novel feature extraction algorithms. IEEE Access 2020, 8, 16362–16371. [Google Scholar] [CrossRef]
- Baris, B.; Cek, M.E.; Kuntalp, D.G. Modulation classification of MFSK modulated signals using spectral centroid. Wirel. Pers. Commun. 2021, 119, 763–775. [Google Scholar] [CrossRef]
- Shah, S.; Coronato, A.; Ghauri, S.; Alam, S.; Sarfraz, M. CSA-Assisted Gabor Features for Automatic Modulation Classification. Circuits Syst. Signal Process. 2021, 41, 1660–1682. [Google Scholar] [CrossRef]
- Weng, L.; He, Y.; Peng, J.; Zheng, J.; Li, X. Deep cascading network architecture for robust automatic modulation classification. Neurocomputing 2021, 455, 308–324. [Google Scholar] [CrossRef]
- Ali, A.; Yangyu, F. Automatic modulation classification using deep learning based on sparse autoencoders with nonnegativity constraints. IEEE Signal Process. Lett. 2017, 24, 1626–1630. [Google Scholar] [CrossRef]
- Huang, S.; Yao, Y.; Wei, Z.; Feng, Z.; Zhang, P. Automatic modulation classification of overlapped sources using multiple cumulants. IEEE Trans. Veh. Technol. 2016, 66, 6089–6101. [Google Scholar] [CrossRef]
- Nie, Y.; Shen, X.; Huang, S.; Zhang, Y.; Feng, Z. Automatic modulation classification based multiple cumulants and quasi-newton method for mimo system. In Proceedings of the Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; pp. 1–5. [Google Scholar]
- Triantafyllakis, K.; Surligas, M.; Vardakis, G.; Papadakis, S. Phasma: An automatic modulation classification system based on random forest. In Proceedings of the International Symposium on Dynamic Spectrum Access Networks (DySPAN), Baltimore, MD, USA, 6–9 March 2017; pp. 1–3. [Google Scholar]
- Mihandoost, S.; Amirani, M.C. Automatic modulation classification using combination of wavelet transform and GARCH model. In Proceedings of the 8th International Symposium on Telecommunications (IST), Tehran, Iran, 27–28 September 2016; pp. 484–488. [Google Scholar]
- Han, L.; Gao, F.; Li, Z.; Dobre, O.A. Low complexity automatic modulation classification based on order-statistics. IEEE Trans. Wirel. Commun. 2016, 16, 400–411. [Google Scholar] [CrossRef]
- Dai, A.; Zhang, H.; Sun, H. Automatic modulation classification using stacked sparse auto-encoders. In Proceedings of the 13th International Conference on Signal Processing (ICSP), Chengdu, China, 6–10 November 2016; pp. 248–252. [Google Scholar]
- Kim, S.J.; Yoon, D. Automatic modulation classification in practical wireless channels. In Proceedings of the International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 19–21 October 2016; pp. 915–917. [Google Scholar]
- Zhao, Z.; Wang, S.; Zhang, W.; Xie, Y. A novel automatic modulation classification method based on Stockwell-transform and energy entropy for underwater acoustic signals. In Proceedings of the International Conference on Signal Processing, Communications and Computing (ICSPCC), Hong Kong, China, 5–8 August 2016; pp. 1–6. [Google Scholar]
- Zhou, Q.; Lu, H.; Jia, L.; Mao, K. Automatic modulation classification with genetic backpropagation neural network. In Proceedings of the Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 4626–4633. [Google Scholar]
- Ghauri, S.A. KNN based classification of digital modulated signals. IIUM Eng. J. 2016, 17, 71–82. [Google Scholar] [CrossRef]
- Xu, H.; Przystupa, K.; Fang, C.; Marciniak, A.; Kochan, O.; Beshley, M. A combination strategy of feature selection based on an integrated optimization algorithm and weighted k-nearest neighbor to improve the performance of network intrusion detection. Electronics 2020, 9, 1206. [Google Scholar] [CrossRef]
- Abdelmutalab, A.; Assaleh, K.; El-Tarhuni, M. Automatic modulation classification using polynomial classifiers. In Proceedings of the 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington, DC, USA, 1–2 September 2014; pp. 806–810. [Google Scholar]
- Satija, U.; Mohanty, M.; Ramkumar, B. Automatic modulation classification using S-transform based features. In Proceedings of the 2nd International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 19–20 February 2015; pp. 708–712. [Google Scholar]
- Abuella, H.; Ozdemir, M.K. Automatic modulation classification based on kernel density estimation. Can. J. Electr. Comput. Eng. 2016, 39, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Kharbech, S.; Dayoub, I.; Zwingelstein-Colin, M.; Simon, E.P. On classifiers for blind feature-based automatic modulation classification over multiple-input–multiple-output channels. IET Commun. 2016, 10, 790–795. [Google Scholar] [CrossRef]
- Keshk, M.E.H.M.; El-Naby, M.A.; Al-Makhlasawy, R.M.; El-Khobby, H.A.; Hamouda, W.; Abd Elnaby, M.M.; El-Rabaie, E.S.M.; Dessouky, M.I.; Alshebeili, S.A.; El-Samie, F.E.A. Automatic modulation recognition in wireless multi-carrier wireless systems with cepstral features. Wirel. Pers. Commun. 2015, 81, 1243–1288. [Google Scholar] [CrossRef]
- Hossen, A.; Al-Wadahi, F.; Jervase, J.A. Classification of modulation signals using statistical signal characterization and artificial neural networks. Eng. Appl. Artif. Intell. 2007, 20, 463–472. [Google Scholar] [CrossRef]
- Ahmadi, N. Using fuzzy clustering and TTSAS algorithm for modulation classification based on constellation diagram. Eng. Appl. Artif. Intell. 2010, 23, 357–370. [Google Scholar] [CrossRef]
- Abdel-Moneim, M.A.; El-Shafai, W.; Abdel-Salam, N.; El-Rabaie, E.S.M.; Abd El-Samie, F.E. A survey of traditional and advanced automatic modulation classification techniques, challenges, and some novel trends. Int. J. Commun. Syst. 2021, 34, e4762. [Google Scholar] [CrossRef]
- Ghauri, S.A.; Qureshi, I.M.; Malik, A.N. A novel approach for automatic modulation classification via hidden Markov models and Gabor features. Wirel. Pers. Commun. 2017, 96, 4199–4216. [Google Scholar] [CrossRef]
BPSK | 0.78 | 2.45 | 0.29 | 0.27 | 0.46 | 31.41 | 19.65 | 77.40 | 123.07 | 2284.53 |
QPSK | 0.05 | 2.41 | 0.09 | 0.03 | 0.58 | 32.95 | 0.40 | 77.87 | 12.49 | 2210.43 |
QAM | 0.16 | 3.35 | 0.03 | 0.28 | 0.40 | 0.83 | 42.92 | 210.23 | 1.27 | 8477.33 |
16-QAM | 0.79 | 11.64 | 0.10 | 0.51 | 0.56 | 13.34 | 384.43 | 956.81 | 331.22 | 13,052.11 |
64-QAM | 1.10 | 42.16 | 0.04 | 0.54 | 0.58 | 31.43 | 1004.16 | 4053.52 | 1186.00 | 228,652.61 |
Linear Combinations | BPSK | QPSK | QAM | 16-QAM | 64-QAM |
---|---|---|---|---|---|
2372.2 | 2211.3 | 8307.9 | 12854.9 | 218736.5 |
Parameter | Standard Value |
---|---|
No. of Samples | [512, 1024, 2048, 4096] |
SNR | [0–5] dB |
Training of Recognizer | 70% |
Testing of Recognizer | 20% |
No. of Genes | 120 |
No. of Chromosomes | 1024 |
Crossover Fraction | 0.25 |
Crossover | Heuristic |
Selection | Stochastic Uniform |
Mutation | Adaptive Feasible |
Elite Count | 2 |
PRA for BPSK | |||
---|---|---|---|
No. of Samples | 0 dB | 5 dB | 10 dB |
512 | 90 | 99.01 | 100 |
1024 | 100 | 100 | 100 |
2048 | 100 | 100 | 100 |
4096 | 100 | 100 | 100 |
PRA for QPSK | |||
No. of Samples | 0 dB | 5 dB | 10 dB |
512 | 97 | 100 | 100 |
1024 | 99.90 | 100 | 100 |
2048 | 100 | 100 | 100 |
4096 | 100 | 100 | 100 |
PRA for QAM | |||
No. of Samples | 0 dB | 5 dB | 10 dB |
512 | 86 | 99 | 100 |
1024 | 94 | 99.99 | 100 |
2048 | 100 | 100 | 100 |
4096 | 100 | 100 | 100 |
PRA of 16-QAM | |||
No. of Samples | 0 dB | 5 dB | 10 dB |
512 | 98 | 99.98 | 100 |
1024 | 99.99 | 100 | 100 |
2048 | 100 | 100 | 100 |
4096 | 100 | 100 | 100 |
No. of Samples | 0 dB | 5 dB | 10 dB |
512 | 98 | 99 | 100 |
1024 | 99.95 | 100 | 100 |
2048 | 100 | 100 | 100 |
4096 | 100 | 100 | 100 |
PRA for BPSK | |||
---|---|---|---|
No. of Samples | 0 dB | 5 dB | 10 dB |
512 | 92.5 | 94.7 | 96.1 |
1024 | 95 | 97.2 | 98 |
2048 | 97.5 | 98.2 | 99 |
4096 | 98.5 | 99.5 | 100 |
PRA for QPSK | |||
No. of Samples | 0 dB | 5 dB | 10 dB |
512 | 94.2 | 96.5 | 97 |
1024 | 96.7 | 98 | 99.5 |
2048 | 98 | 99 | 100 |
4096 | 99 | 100 | 100 |
PRA for QAM | |||
No. of Samples | 0 dB | 5 dB | 10 dB |
512 | 80 | 88 | 96 |
1024 | 87 | 93 | 97 |
2048 | 98 | 99 | 100 |
4096 | 99.5 | 100 | 100 |
PRA for 16-QAM | |||
No. of Samples | 0 dB | 5 dB | 10 dB |
512 | 88 | 95 | 97 |
1024 | 92 | 97 | 99 |
2048 | 98 | 98.5 | 100 |
4096 | 99 | 99.7 | 100 |
PRA for 64-QAM | |||
No. of Samples | 0 dB | 5 dB | 10 dB |
512 | 92 | 96 | 99 |
1024 | 95 | 96 | 99 |
2048 | 98 | 98.5 | 100 |
4096 | 99 | 100 | 100 |
Modulation Schemes | Keshk et al. [60] | Ali et al. [36] | Chen et al. [39] | Ghauri et al. [64] | Hussain et al. [54] | Proposed Classifier | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. of Samples | – | – | – | 2048 Samples | 1024 Samples | 1024 Samples | ||||||
SNR | 0 dB | 5 dB | 0 dB | 5 dB | 0 dB | 8 dB | 0 dB | 5 dB | 0 dB | 5 dB | 0 dB | 5 dB |
BPSK | 50 | 65 | - | 98 | - | 99 | - | - | 98 | 99.9 | 100 | 100 |
QPSK | 73 | 86 | - | 98 | - | 98 | - | - | 99.9 | 100 | 99.9 | 100 |
QAM | - | - | 96 | - | - | - | 72 | 98 | 91 | 99 | 94 | 99.9 |
16-QAM | - | - | 97 | - | - | 97 | 72 | 97 | 99.8 | 99.9 | 99.9 | 100 |
64-QAM | - | - | 98 | - | - | 97 | 70 | 98 | 99 | 99.9 | 99.9 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, A.; Alam, S.; Ghauri, S.A.; Ali, M.; Sherazi, H.R.; Akhunzada, A.; Bibi, I.; Gani, A. Automatic Modulation Recognition Based on the Optimized Linear Combination of Higher-Order Cumulants. Sensors 2022, 22, 7488. https://doi.org/10.3390/s22197488
Hussain A, Alam S, Ghauri SA, Ali M, Sherazi HR, Akhunzada A, Bibi I, Gani A. Automatic Modulation Recognition Based on the Optimized Linear Combination of Higher-Order Cumulants. Sensors. 2022; 22(19):7488. https://doi.org/10.3390/s22197488
Chicago/Turabian StyleHussain, Asad, Sheraz Alam, Sajjad A. Ghauri, Mubashir Ali, Husnain Raza Sherazi, Adnan Akhunzada, Iram Bibi, and Abdullah Gani. 2022. "Automatic Modulation Recognition Based on the Optimized Linear Combination of Higher-Order Cumulants" Sensors 22, no. 19: 7488. https://doi.org/10.3390/s22197488
APA StyleHussain, A., Alam, S., Ghauri, S. A., Ali, M., Sherazi, H. R., Akhunzada, A., Bibi, I., & Gani, A. (2022). Automatic Modulation Recognition Based on the Optimized Linear Combination of Higher-Order Cumulants. Sensors, 22(19), 7488. https://doi.org/10.3390/s22197488