Study of the B-Dot Sensor for Aircraft Surface Current Measurement
Abstract
:1. Introduction
2. The Basic Theory
2.1. B-Dot Measurement Principle
2.2. Lumped Parameter Model
3. The Optimized Design of the Sensors
3.1. The Selection of the RL
3.2. Calibration Method
3.3. Reconstruction of the Signal
4. Simulation and Experiment
4.1. B-Dot and Circuit Design
4.2. Error Analysis
4.2.1. The Calibration System Error
4.2.2. The Error of the B-Dot and the Circuit
4.3. Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- AC 25.954-1. Transport Airplane Fuel System Lightning Protection Document Information. Available online: https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentID/1032746 (accessed on 16 April 2021).
- F.A. Industry Documents To Support Aircraft Lightning Protection Certification. Available online: https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_20-155A.pdf (accessed on 25 April 2021).
- Airworthiness Standards for Transport Aircraft CCAR-25-R4. 2011. Available online: http://www.caac.gov.cn/XXGK/XXGK/MHGZ/201606/P020160622405532063536.pdf (accessed on 10 May 2021).
- Zhang, C.; He, Y.; Du, B.; Yuan, L.; Li, B.; Jiang, S. Transformer fault diagnosis method using IoT based monitoring system and ensemble machine learning. Future Gener. Comput. Syst. Int. J. Escience 2020, 108, 533–545. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, S.; He, Y. An Integrated Method of the Future Capacity and RUL Prediction for Lithium-Ion Battery Pack. IEEE Trans. Veh. Technol. 2020, 71, 2601–2613. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, C.; Wang, Y. Lithsium-ion battery capacity and remaining useful life prediction using board learning system and long short-term memory neural network. J. Energy Storage 2022, 52, 104901. [Google Scholar] [CrossRef]
- Huang, R.-T.; Duan, Y.-T.; Shi, L.-H.; Zhang, Q.; Su, L.-Y.; Qiu, S. Direct Current Injection Test Devices on Metal Cylinder: Experiment and Numerical Simulation. IEEE Access 2019, 7, 65870–65876. [Google Scholar] [CrossRef]
- Cheng, Y.; Xiang, N.; Ding, L.; Xu, Z.; Wang, L.; Yang, J.; Zhang, Z. Development of the 3-D Measurement System of Lightning Transient Magnetic Field Based on Tunneling Magnetoresistive Effect. In Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China, 6–10 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Aircraft Lightning Environment and Related Test Waveforms. Available online: https://www.sae.org/standards/content/arp5412b/ (accessed on 18 October 2021).
- Thompson, J.E.; Luessen, L.H. Electromagnetic Sensors and Measurement Techniques. In Fast Electrical and Optical Measurements; Springer: Berlin/Heidelberg, Germany, 1986; pp. 73–144. [Google Scholar] [CrossRef]
- Sharifinia, S.; Allahbakhshi, M.; Ghanbari, T.; Akbari, A.; Mirzaei, H.R. A New Application of Rogowski Coil Sensor for Partial Discharge Localization in Power Transformers. IEEE Sens. J. 2021, 21, 10743–10751. [Google Scholar] [CrossRef]
- Sebo, S.; Caldecott, R.; Altay, O.; Schweickart, L.; Horwath, J.; Walko, L. Transient magnetic flux density measurement results on a fuselage-like test setup and investigation of the effects of apertures. In Proceedings of the Digest of Technical Papers. PPC-2003. 14th IEEE International Pulsed Power Conference (IEEE Cat. No.03CH37472), Dallas, TX, USA, 15–18 June 2003. [Google Scholar] [CrossRef]
- Sebo, S.A.; Caldecott, R.; Schweickart, D.L.; Walko, L.C.; Horwath, J.C. The development of a transient magnetic field measurement technique for implementation on a fuselage-like test setup. In Proceedings of the PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers (Cat. No.01CH37251), Las Vegas, NV, USA, 17–22 June 2001; Volume 1002, pp. 1008–1011. [Google Scholar]
- Sousa, F.S.I.; Altafim, R.A.C.; Ferreira, D.A.P. Low-cost lightning current peak detector for installation on communication towers. In Proceedings of the 2016 IEEE Electrical Insulation Conference (EIC), Montréal, QC, Canada, 19–22 June 2016. [Google Scholar] [CrossRef]
- Yao, C.; Long, Y.; Wu, H.; Mi, Y.; Wang, Q.; Ma, Y.; Shen, Y.; Yang, Z. A novel lightning current monitoring system based on the differential-integral loop. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 1247–1255. [Google Scholar] [CrossRef]
- Mei, H.; Yan, S.; Zhao, C.; Wang, L. Research on Lightning Current Sensor Coil Based on Lightning Space Magnetic Field. IEEE Trans. Instrum. Meas. 2018, 67, 1922–1928. [Google Scholar] [CrossRef]
- Van Deursen, A.P.J.; Stelmashuk, V. Inductive Sensor for Lightning Current Measurement, Fitted in Aircraft Windows—Part I: Analysis for a Circular Window. IEEE Sens. J. 2011, 11, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, W.; Chen, P. A Design Method of PCB Rogowski Coil in Limited Space and Modified Integral Circuit. IEEE Sens. J. 2020, 20, 5801–5808. [Google Scholar] [CrossRef]
- Han, S.; Han, X.; Sun, W. The Analysis of Magnetic Flux Density Inside Rogowski Coil Based on Full Current Theory. IEEE Sens. Lett. 2020, 4, 1–4. [Google Scholar] [CrossRef]
- Dubickas, V.; Edin, H. High-Frequency Model of the Rogowski Coil With a Small Number of Turns. IEEE Trans. Instrum. Meas. 2007, 56, 2284–2288. [Google Scholar] [CrossRef]
- Mingotti, A.; Peretto, L.; Tinarelli, R. A Smart Frequency Domain-Based Modeling Procedure of Rogowski Coil for Power Systems Applications. IEEE Trans. Instrum. Meas. 2020, 69, 6748–6755. [Google Scholar] [CrossRef]
- Fu, S.; Deng, E.; Peng, C.; Zhang, G.; Zhao, Z.; Cui, X. Method of Turns Arrangement of Noncircular Rogowski Coil With Rectangular Section. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Kütt, L.; Shafiq, M.; Järvik, J.; Lehtonen, M.; Kilter, J. Air-core inductive current sensor for fast transients measurements in distribution networks. In Proceedings of the 2012 Electric Power Quality and Supply Reliability, Tartu, Estonia, 11–13 June 2012. [Google Scholar] [CrossRef]
- Kütt, L.; Järvik, J.; Vaimann, T.; Shafiq, M.; Lehtonen, M.; Kilter, J. High-frequency current sensor for power network on-line measurements. In Proceedings of the 13th Scientific Conference Electric Power Engineering 2012 (EPE 2012), Brno, Czech Republic, 23–25 May 2012; pp. 367–371. [Google Scholar]
- Van Deursen, A.P.J. Inductive Sensor for Lightning Current Measurement, Fitted in Aircraft Windows—Part II: Measurements on an A320 Aircraft. IEEE Sens. J. 2011, 11, 205–209. [Google Scholar] [CrossRef]
- Shafiq, M.; Kutt, L.; Lehtonen, M.; Nieminen, T.; Hashmi, M. Parameters Identification and Modeling of High-Frequency Current Transducer for Partial Discharge Measurements. IEEE Sens. J. 2013, 13, 1081–1091. [Google Scholar] [CrossRef]
- Ayachit, A.; Kazimierczuk, M.K. Self-Capacitance of Single-Layer Inductors With Separation Between Conductor Turns. IEEE Trans. Electromagn. Compat. 2017, 59, 1642–1645. [Google Scholar] [CrossRef]
- Smith, F.L. Radiotron Designer’s Handbook; Radio Corporation of America: Toledo, OH, USA, 1953. [Google Scholar]
- Bose, S.; Kaur, M.; Barada, K.K.; Ghosh, J.; Pal, R. Understanding the working of a B-dot probe. Eur. J. Phys. 2018, 40, 015803. [Google Scholar] [CrossRef]
- Jakubowski, J.; Kuchta, M.; Kubacki, R. D-Dot Sensor Response Improvement in the Evaluation of High-Power Microwave Pulses. Electronics 2021, 10, 123. [Google Scholar] [CrossRef]
- Yao, L.; Huang, J.; Kang, N.; Shen, T.; Liu, D.; Zhang, F.; Sun, H. Compensation of the offset in numerical integration of a D-dot sensor measurement. In Proceedings of the 2014 3rd Asia-Pacific Conference on Antennas and Propagation, Harbin, China, 26–29 July 2014; pp. 898–901. [Google Scholar]
- Jóśko, A.; Dziadak, B.; Starzyński, J.; Sroka, J. Derivative Probes Signal Integration Techniques for High Energy Pulses Measurements. Energies 2022, 15, 2244. [Google Scholar] [CrossRef]
- Weiping, X.; Guo, F.; Wang, Z.; Qing, Y.; Yuan, J.; Liang, J.; Xie, W. Frequency Response Properties of the B-Dot Sensors Employed on a High Current Pulsed Power Facility. IEEE Sens. J. 2021, 21, 17732–17737. [Google Scholar] [CrossRef]
- IEEE Standard Procedures for Measurement of Power Frequency Electric and Magnetic Fields from AC Power Lines. Available online: https://www.etsist.upm.es/estaticos/catedra-coitt/web_salud_medioamb/normativas/ieee/644-1994.pdf (accessed on 10 January 2022).
- Kichouliya, R.; Satav, S.M.; Pande, D.C. Characterization of Derivative Sensor Without Using Transient Source. In Proceedings of the 2019 IEEE 5th Global Electromagnetic Compatibility Conference (GEMCCON), Bengaluru, India, 6–8 November 2019; pp. 1–4. [Google Scholar]
- Zhang, G.; Cao, R.; Li, P. Comparison of Magnetic Field Characteristics Produced by Three-Electrode Spark Gap Switch and Thyristor Switch in Power Pulsed Systems. IEEE Trans. Plasma Sci. 2019, 47, 5172–5179. [Google Scholar] [CrossRef]
- Paophan, B.; Kunakorn, A.; Yutthagowith, P. Implementation of a Rogowski’s coil for partial discharge detection. In Proceedings of the 2016 19th International Conference on Electrical Machines and Systems (ICEMS), Chiba, Japan, 13–16 November 2016; pp. 1–4. [Google Scholar]
Current Type | Magnetic Field Amplitude (A/m) | Change Rate of Magnetic Field | Induced Voltage (V) | Voltage Divider Ratio | Op Amp Input Voltage (V) | Divider Resistor Value (Ω) |
---|---|---|---|---|---|---|
A | 0–300 | 2.1 × 108 | 2.055 | 1 | 2.055 | 2.2 k |
300–3 k | 2.1 × 109 | 20 | 0.1 | 2 | 220 | |
3 k–30 k | 2.1 × 1010 | 205 | 0.01 | 2.05 | 20 | |
H | 0–10 | 2 × 108 | 1.9 | 1 | 1.9 | 2.2 k |
10–100 | 2 × 109 | 19 | 0.1 | 1.9 | 220 | |
100–1000 | 2 × 1010 | 195.87 | 0.01 | 1.9587 | 20 |
Deviation of the Coil | The Induced Voltage of the Coil | ||
---|---|---|---|
Simulation | Theoretical Calculation | Traditional Calculation | |
10 mm from the tube 15 mm from the tube 20 mm from the tube | 228.9 | 229.4 | 310 |
228.7 | 229.3 | 297 | |
228.4 | 229.2 | 285 | |
Rotation angle 5° Rotation angle 10° | 227.9 | 228.5 | 309 |
226.3 | 225.9 | 305 | |
Rotation angle 20° | 215.9 | 215.5 | 291 |
LS (μH) | CS (pF) | RS (Ω) | |
---|---|---|---|
Experiment | 7.9 | 0.2 | 2.2 |
Analytical formula | 6.69 | 0.216 | 2.38 |
Simulation | 8.47 | 0.249 | 2.4 |
Methd | A | B |
---|---|---|
Peak value error | 3.1% | 7.4% |
Wavefront time error | 2.8% | 6.9% |
Half-peak time error | 3.7% | not recognized |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, C.; Duan, Z.; Huang, Y.; Qiu, S.; Si, X.; Li, Z.; Yuan, Z. Study of the B-Dot Sensor for Aircraft Surface Current Measurement. Sensors 2022, 22, 7499. https://doi.org/10.3390/s22197499
Tong C, Duan Z, Huang Y, Qiu S, Si X, Li Z, Yuan Z. Study of the B-Dot Sensor for Aircraft Surface Current Measurement. Sensors. 2022; 22(19):7499. https://doi.org/10.3390/s22197499
Chicago/Turabian StyleTong, Chen, Zemin Duan, Yeyuan Huang, Shanliang Qiu, Xiaoliang Si, Zhibao Li, and Zhijie Yuan. 2022. "Study of the B-Dot Sensor for Aircraft Surface Current Measurement" Sensors 22, no. 19: 7499. https://doi.org/10.3390/s22197499
APA StyleTong, C., Duan, Z., Huang, Y., Qiu, S., Si, X., Li, Z., & Yuan, Z. (2022). Study of the B-Dot Sensor for Aircraft Surface Current Measurement. Sensors, 22(19), 7499. https://doi.org/10.3390/s22197499