Trajectory Optimization in Terms of Energy and Performance of an Industrial Robot in the Manufacturing Industry
Abstract
:1. Introduction
1.1. Research Motivation
1.2. Literature Review
1.3. Research Objectives
2. Methodology
2.1. Flowchart for the Optimization of Trajectories
2.2. Study of the Kinematics of a Robot with Six DOFs and a Spherical Wrist
2.2.1. Direct and Inverse Kinematics of Serial Manipulator with Six DOFs and Spherical Wrist
2.2.2. Differential Kinematics of Serial Manipulator with Six DOFs and Spherical Wrist
2.2.3. Manipulability of a Serial Manipulator with Six DOFs and a Spherical Wrist
2.3. Study of the Dynamics of a Robot with Six DOFs and a Spherical Wrist
2.3.1. Inverse Dynamics
2.3.2. Direct Dynamics
2.3.3. Electric Energy of the Manipulator
2.4. Method of Optimization: Kalman Algorithm
- Set the number of points N, the number of best candidates Nξ and the slowdown coefficient α;
- Generate the sequence of N vectors for each iteration j according to the Gaussian distribution;
- Perform the measurement process;
- Update the stop rule;
- Check the stop rule. If it is not satisfied, go to the Gaussian generator step.
3. Case Study: Serial Robot
3.1. Robot Characteristics
Robot Axis | Position [°] | Speed [°/s] |
---|---|---|
1 | ±185 | 140 |
2 | –35/–135 | 126 |
3 | –158/–130 | 140 |
4 | ±350 | 260 |
5 | ±119 | 245 |
6 | ±350 | 322 |
3.2. Trajectories
3.3. Robot Characteristics
3.3.1. Weights
3.3.2. Manipulability and Electric Energy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oztemel, E.; Gursey, S. Literature review of Industry 4.0 and related technologies. J. Intell. Manuf. 2020, 31, 127–182. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Substantial capabilities of robotics in enhancing industry 4.0 implementation. Cognit. Rob. 2021, 1, 58–75. [Google Scholar] [CrossRef]
- Garriz, G.; Domingo, R. Simulation, through Discrete Events, of Industrial Processes in Productive Environments. Procedia Manuf. 2017, 13, 1074–1081. [Google Scholar] [CrossRef]
- Volkswagen Navarra. Proceso Productivo VW Navarra. Available online: http://vw-navarra.es/category/nuestra-fabrica/proceso-productivo/ (accessed on 30 June 2022).
- Alekseeva, E.I.; Nanush’yan, S.R.; Ruskol, I.Y.; Sokolyuk, E.V. Silicone Compounds and Sealants and their Application in Various Branches of Industry. Polym. Sci. Ser. D 2010, 3, 244–248. [Google Scholar] [CrossRef]
- Lavery, M. Sealants in the automotive industry. Int. J. Adhes. Adhes. 2002, 22, 443–445. [Google Scholar] [CrossRef]
- Maiolino, P.; Woolley, R.; Branson, D.; Benardos, P.; Popov, A.; Ratchev, S. Flexible Robot Sealant Dispensing Cell using RGB-D Sensor and Off-line Programming. Robot. Comput. Integr. Manuf. 2017, 48, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, T. Dynamic Manipulability of Robot Manipulators. In Proceedings of the IEEE International Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985. [Google Scholar]
- Elkady, A.Y.; Mohammed, M.; Sobh, T. A New Algorithm for Measuring and Optimizing the Manipulability Index. J. Intell. Robot. Syst. 2009, 59, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Doty, K.L.; Melchiom, C.; Schwartz, E.M.; Bonivento, C. Robot Manipulability. IEEE Trans. Rob. Autom. 1995, 11, 462–468. [Google Scholar] [CrossRef]
- From, P.J.; Robertsson, A.; Johansson, R. On the Manipulability of Velocity-constrained Serial Robotic Manipulators. In Proceedings of the 19th World Congress of the International Federation of Automatic Control, Cape Town, South Africa, 24–29 August 2014. [Google Scholar] [CrossRef] [Green Version]
- Pozna, C.R.; Horváth, E.; Hollósi, J. The Inverse Kinematics Problem, a Heuristical Approach. In Proceedings of the IEEE 14th International Symposium on Applied Machine Intelligence and Informatics, Herlany, Slovakia, 21–23 January 2016. [Google Scholar] [CrossRef]
- Jin, L.; Li, S.; La, H.M.; Luo, X. Manipulability Optimization of Redundant Manipulators Using Dynamic Neural Networks. IEEE Trans. Ind. Electron. 2017, 64, 4710–4720. [Google Scholar] [CrossRef]
- Dufour, K.; Suleiman, W. On Inverse Kinematics with Nonlinear Criteria: Trajectory Relaxation. In Proceedings of the IEEE 15th International Workshop on Advanced Motion Control (AMC), Tokyo, Japan, 9–11 March 2018. [Google Scholar] [CrossRef]
- Choi, D.S.; Kim, S.J.; Kim, Y.; Ha, I.J. A Computationally Efficient Approach to Time-Optimal Control of Robotic Manipulators along Specified Paths. In Proceedings of the ISIE 2001, 2001 IEEE International Symposium on Industrial Electronics, Pusan, Korea, 12–16 June 2001. [Google Scholar] [CrossRef]
- Saravanan, R.; Ramabalan, S. Evolutionary Minimum Cost Trajectory Planning. J. Intell. Robot. Syst. 2008, 52, 45–77. [Google Scholar] [CrossRef]
- Abu-Dakka, F.J.; Assad, F.I.; Alkhdour, R.M.; Abderahim, M. Statistical evaluation of an evolutionary algorithm for minimum time trajectory planning problem for industrial robots. Int. J. Adv. Manuf. Technol. 2017, 89, 389–406. [Google Scholar] [CrossRef]
- Saidur, R. A review on electrical motors energy use and energy savings. Renew. Sustain. Energy Rev. 2009, 14, 877–898. [Google Scholar] [CrossRef]
- Paes, K.; Dewulfa, W.; Elst, K.V.; Kellens, K.; Slaets, P. Energy efficient trajectories for an industrial ABB robot. Procedia CIRP 2014, 15, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Meike, D.; Ribickis, L. Energy Efficient Use of Robotics in the Automobile Industry. In Proceedings of the 15th International Conference on Advanced Robotics, Tallin, Estonia, 20–23 June 2011. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, Y.; Tan, L.; Zhong, Z. Energy efficiency evaluation of hot-wire laser welding based on process characteristic and electric energy. J. Clean. Prod. 2015, 87, 255–262. [Google Scholar] [CrossRef]
- Wigström, O.; Lennartson, B.; Vergnano, A.; Breitholtz, C. High-Level Scheduling of Energy Optimal Trajectories. IEEE Trans. Autom. Sci. Eng. 2013, 10, 57–64. [Google Scholar] [CrossRef]
- Riazi, S.; Bengtsson, K.; Bischoff, R.; Aurnhammer, A.; Wigström, O.; Lennartson, B. Energy and Peak-power Optimization of Existing Time-optimal Robot Trajectories. In Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE), Fort Worth, TX, USA, 21–25 August 2016. [Google Scholar] [CrossRef]
- Paryanto, M.N.; Kohl, J.; Merhof, J.; Spreng, S.; Franke, J. Energy consumption and dynamic behavior analysis of a six-axis industrial robot in an assembly system. Procedia CIRP 2014, 23, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Björkenstam, S.; Gleeson, D.; Bohlin, R.; Carlson, J.S.; Lennartson, B. Energy Efficient and Collision Free Motion of Industrial Robots using Optimal Control. In Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE), Madison, WI, USA, 17–20 August 2013. [Google Scholar] [CrossRef] [Green Version]
- Rubio, F.; Valero, F.; Sunyer, J.; Cuadrado, J. Optimal time trajectories for industrial robots with torque, power, jerk and energy consumed constraints. Ind. Robot 2012, 39, 92–100. [Google Scholar] [CrossRef]
- Mukund-Nilakantan, J.; Huang, G.Q.; Ponnambalam, S.G. An investigation on minimizing cycle time and total energy consumption in robotic assembly line systems. J. Clean. Prod. 2015, 90, 311–325. [Google Scholar] [CrossRef]
- Zhou, B.-H.; Shen, C.-Y. Multi-objective optimization of material delivery for mixed model assembly lines with energy consideration. J. Clean. Prod. 2018, 192, 293–305. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, Q.; Zhan, L. Mathematical model and grey wolf optimization for low-carbon and low-noise U-shaped robotic assembly line balancing problem. J. Clean. Prod. 2019, 215, 744–756. [Google Scholar] [CrossRef]
- Li, Z.; Tang, Q.; Zhang, L. Minimizing energy consumption and cycle time in two-sided robotic assembly line systems using restarted simulated annealing algorithm. J. Clean. Prod. 2016, 135, 508–522. [Google Scholar] [CrossRef]
- Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.Y. Kalman Filter for Robot Vision: A Survey. IEEE T. Ind. Electron. 2012, 59, 4409–4420. [Google Scholar] [CrossRef]
- Nasir, N.Z.M.; Zakaria, M.A.; Razali, S.; bin Abu, M.Y. Autonomous mobile robot localization using Kalman filter. MATEC Web Conf. 2017, 90, 01069. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Fernandez, C.; Chen, M.; Wang, L.; Su, J. A novel safety anticipation estimation method for the aerial lithium-ion battery pack based on the real time detection and filtering. J. Clean. Prod. 2018, 185, 187–197. [Google Scholar] [CrossRef]
- Wang, S.; Fernandez, C.; Zou, C.; Yu, C.; Li, X. Open circuit voltage and state of charge relationship functional optimization for the working state monitoring for the aerial lithium-ion battery pack. J. Clean. Prod. 2018, 198, 1090–1104. [Google Scholar] [CrossRef]
- Zhou, Z.; Kang, Y.; Shang, Y.; Cui, N.; Zhang, C.; Duan, B. Peak power prediction for series-connected LiNCM battery pack based on representative cells. J. Clean. Prod. 2019, 230, 1061–1073. [Google Scholar] [CrossRef]
- Wang, J.; Wen, C. Real-Time Updating High-Order Extended Kalman Filtering Method Based on Fixed-Step Life Prediction for Vehicle Lithium-Ion Batteries. Sensors 2022, 22, 2574. [Google Scholar] [CrossRef] [PubMed]
- Motahhir, S.; Hammoumi, A.E.; Ghzizal, A.E. The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm. J. Clean. Prod. 2020, 246, 118983. [Google Scholar] [CrossRef]
- Renna, P.; Materi, S. A Literature Review of Energy Efficiency and Sustainability in Manufacturing Systems. Appl. Sci. 2021, 11, 7366. [Google Scholar] [CrossRef]
- Prado-Galiñanes, H.; Domingo, R. Quantifying the Impact of Production Globalization through Application of the Life Cycle Inventory Methodology and Its Influence on Decision Making in Industry. Processes 2021, 9, 1271. [Google Scholar] [CrossRef]
- Shrouf, F.; Gong, B.; Ordieres-Meré, J. Multi-level awareness of energy use in production processes. J. Clean. Prod. 2017, 142, 2570–2585. [Google Scholar] [CrossRef]
- Mukund-Nilakantan, J.; Li, Z.; Tang, Q.; Nielsen, P. Multi-objective co-operative co-evolutionary algorithm for minimizing carbon footprint and maximizing line efficiency in robotic assembly line systems. J. Clean. Prod. 2017, 156, 124–136. [Google Scholar] [CrossRef]
- Borsato, M. An energy efficiency focused semantic information model for manufactured assemblies. J. Clean. Prod. 2017, 140, 1626–1643. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues-Vaz, C.; Shoeninger-Rauen, T.R.; Rojas-Lezana, A.G. Sustainability and Innovation in the Automotive Sector: A Structured Content Analysis. Sustainability 2017, 9, 880. [Google Scholar] [CrossRef] [Green Version]
- Garriz, C.; Domingo, R. Development of Trajectories through the Kalman Algorithm and Application to an Industrial Robot in the Automotive Industry. IEEE Access 2019, 7, 23570–23577. [Google Scholar] [CrossRef]
- Kleppe, A.; Egeland, O. Inverse Kinematics for Industrial Robots using Conformal Geometric Algebra. Model. Identif. Control. 2016, 37, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, T. Foundations of Robotics: Analysis and Control; The MIT Press: Cambridge, MA, USA, 1990; pp. 127–154. [Google Scholar]
- Khalil, W. Dynamic modeling of robots using recursive Newton-Euler techniques. In Proceeding of the 7th International Conference on Informatics, in Control, Automation and Robotics (ICINCO 2010), Funchal, Madeira, Portugal, 15–18 June 2010. [Google Scholar]
- Featherstone, R.; Orin, D. Robot Dynamics: Equations and Algorithms. In Proceedings of the 2000 ICRA-IEEE International Conference on Robotics B Automation, San Francisco, CA, USA, 24–28 April 2000. [Google Scholar] [CrossRef] [Green Version]
- Craig, J. Introduction to Robotics: Mechanics and Control, 4th ed.; Pearson Education: Hoboken, NJ, USA, 2021. [Google Scholar]
- Martinez, J.; Sabater, J.M. Guía Docente para el Diseño de Robots de Servicio. Available online: https://sites.google.com/a/goumh.umh.es/hidma (accessed on 30 June 2022).
- Welch, G.; Bishop, G. An Introduction to the Kalman Filter; Department of Computer Science, University of North Carolina: Chapel Hill, NC, USA, 2006. [Google Scholar]
- Désilles, A.; Zidani, H. Pareto front characterization for multiobjective optimal control problems using Hamilton-Jacobi approach. SIAM J. Control Optim. 2019, 57, 3884–3910. [Google Scholar] [CrossRef]
- Atlas Copco. SCA, SCA ADKE6000. Available online: https://www.atlascopco.com/nl-nl/itba/products/joining-solutions/industrial-dispensing-systems (accessed on 30 June 2022).
- KUKA. Robot Industrial KR-30. Available online: https://www.kuka.com/es-es/productos-servicios/sistemas-de-robot/robot-industrial/kr-30 (accessed on 30 June 2022).
- Bunse, K.; Vodicka, M.; Schönsleben, P.; Brülhart, M.; Ernst, F.O. Integrating energy efficiency performance in production management—Gap analysis between industrial needs and scientific literature. J. Clean. Prod. 2011, 19, 667–679. [Google Scholar] [CrossRef]
Weights | Iteration | Energy (J) | Manipulability | ||
---|---|---|---|---|---|
Energy | Manipulability | ||||
Trajectory 1 | 0.01 | 0.99 | 49 | 9.63 | 0.11 |
0.05 | 0.95 | 53 | 9.11 | 0.112 | |
0.5 | 0.5 | 46 | 9.1 | 0.111 | |
0.95 | 0.05 | 51 | 8.99 | 0.114 | |
0.99 | 0.01 | 80 | 8.66 | 0.109 |
Trajectory 1 | Trajectory 2 | Trajectory 3 | ||
---|---|---|---|---|
Original trajectory | Trajectory points | 71 | 104 | 135 |
Trajectory time (s) | 63.2 | 77.5 | 89.5 | |
Average manipulability | 0.05 | 0.1 | 0.08 | |
Average consumption (kWh × 10−6) | 3.51 | 18.5 | 2.7 | |
Optimized trajectory | Trajectory time (s) | 56.4 | 74.2 | 86.2 |
Average manipulability | 0.121 | 0.119 | 0.112 | |
Average consumption (kWh × 10−6) | 1.03 | 14.8 | 1.46 | |
Iteration | 30 | 27 | 38 | |
Percentage of optimized time (%) | 10.75 | 4.25 | 3.68 | |
Percentage of optimized manipulability (%) | 58.67 | 15.96 | 28.57 | |
Percentage of optimized electric energy (%) | 70.65 | 20 | 45.92 |
Trajectory 1 | Trajectory 2 | Trajectory 3 | ||
---|---|---|---|---|
Trajectory time (s) | Initial trajectory | 63.2 | 77.5 | 89.5 |
Optimized trajectory | 56.4 | 74.2 | 86.2 | |
Δt per day | 6.8 | 3.3 | 3.3 | |
Production/day (bodies) | Initial trajectory | 1186 | 967 | 838 |
Optimized trajectory | 1329 | 1010 | 870 | |
ΔProduction per day | 143 | 43 | 32 | |
Economic savings (EUR/month) | 67,782 | 20,382 | 15,168 |
Trajectory 1 | Trajectory 2 | Trajectory 3 | ||
---|---|---|---|---|
Original trajectory | Energy intensity (kWh × 10−6/vehicle) | 0.0029 | 0.0191 | 0.0032 |
Basic electricity charge indicator (kWh × 10−6) | 0.75 | 0.94 | 0.68 | |
Optimized trajectory | Energy intensity (kWh × 10−6/vehicle) | 7.75 × 10−4 | 0.0146 | 0.0016 |
Basic electricity charge indicator (kWh × 10−6) | 0.34 | 0.93 | 0.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garriz, C.; Domingo, R. Trajectory Optimization in Terms of Energy and Performance of an Industrial Robot in the Manufacturing Industry. Sensors 2022, 22, 7538. https://doi.org/10.3390/s22197538
Garriz C, Domingo R. Trajectory Optimization in Terms of Energy and Performance of an Industrial Robot in the Manufacturing Industry. Sensors. 2022; 22(19):7538. https://doi.org/10.3390/s22197538
Chicago/Turabian StyleGarriz, Carlos, and Rosario Domingo. 2022. "Trajectory Optimization in Terms of Energy and Performance of an Industrial Robot in the Manufacturing Industry" Sensors 22, no. 19: 7538. https://doi.org/10.3390/s22197538
APA StyleGarriz, C., & Domingo, R. (2022). Trajectory Optimization in Terms of Energy and Performance of an Industrial Robot in the Manufacturing Industry. Sensors, 22(19), 7538. https://doi.org/10.3390/s22197538