Matching Algorithm for 3D Point Cloud Recognition and Registration Based on Multi-Statistics Histogram Descriptors
Abstract
:1. Introduction
- First, a descriptor with multi-statistical feature description histogram is proposed. A Local Reference Frame is constructed, and the normals, curvatures, and distribution density of the neighboring points are extracted; the descriptor could describes the features from these three aspects so that it keeps a strong descriptive ability and robustness to noise and mesh resolution.
- Second, based on deep learning a new key point matching algorithm is proposed, which could detect more corresponding key point pairs than the existing methods. The experimental results show that the proposed algorithm is effective on 3D surface matching.
- Finally, the matching algorithm based on MSHD is applied to the real component data of the train bottom. Based on this algorithm, more corresponding key point pairs in the two point clouds are obtained, resulting in a high accuracy of 3D surface matching.
2. Related Work
2.1. Feature Description and Extraction
2.2. The Algorithm of Recognition and Registration
3. Methodology
3.1. Multi-Statistics Histogram Descriptors
3.1.1. Construct an Local Reference Frame
3.1.2. Normals and Curvatures
3.1.3. Generate the Descriptors
3.2. Matching Algorithm
4. Experimental Results
4.1. Multi-Statistics Histogram Descriptor
4.1.1. Data and Testing Environment
4.1.2. Evaluation Criteria of the Descriptor
4.1.3. Robustness to Noise
4.1.4. Robustness to Varying Mesh Resolution
4.1.5. Key Point Matching Based on Descriptors with Single Model
4.2. Matching Algorithm for Key Points between Model and Multi-Object Scene
4.3. Matching Algorithm for Real Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- L, Q.; Z, L.; L, J. Research progress in three-dimensional object recognition. J. Image Graph. 2000, 5, 985–993. [Google Scholar]
- Huang, Z.; Yu, Y.; Xu, J.; Ni, F.; Le, X. PF-Net: Point Fractal Network for 3D Point Cloud Completion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Li, H.; Hartley, R. The 3D-3D Registration Problem Revisited. In Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–21 October 2007; pp. 1–8. [Google Scholar]
- Guo, Y.; Sohel, F.; Bennamoun, M.; Lu, M.; Wan, J. Rotational Projection Statistics for 3D Local Surface Description and Object Recognition. Int. J. Comput. Vis. 2013, 105, 63–86. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Bennamoun, M.; Sohel, F.; Min, L.; Wan, J.; Kwok, N.M. A Comprehensive Performance Evaluation of 3D Local Feature Descriptors. Int. J. Comput. Vis. 2016, 116, 66–89. [Google Scholar] [CrossRef]
- Johnson, A.E. Spin-Images: A Representation for 3-D Surface Matching. Ph.D. Thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA, 1997. [Google Scholar]
- Halma, A.; Haar, F.T.; Bovenkamp, E.; Eendebak, P.; Eekeren, A.V. Single spin image-ICP matching for efficient 3D object recognition. In Proceedings of the ACM Workshop on 3D Object Retrieval, Firenze, Italy, 25 October 2010. [Google Scholar]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D registration. In Proceedings of the IEEE International Conference on Robotics & Automation, Kobe, Japan, 12–17 May 2009. [Google Scholar]
- Tombari, F.; Salti, S.; Stefano, L.D. Unique Signatures of Histograms for Local Surface Description. In Proceedings of the European Conference on Computer Vision Conference on Computer Vision, Crete, Greece, 5–11 September 2010. [Google Scholar]
- Yang, B.; Zang, Y. Automated registration of dense terrestrial laser-scanning point clouds using curves. ISPRS J. Photogramm. Remote Sens. 2014, 95, 109–121. [Google Scholar] [CrossRef]
- Oomori, S.; Nishida, T.; Kurogi, S. Point cloud matching using singular value decomposition. Artif. Life Robot. 2016, 21, 149–154. [Google Scholar] [CrossRef]
- Tombari, F.; Salti, S.; Stefano, L.D. Unique shape context for 3d data description. In 3DOR 2010: Proceedings of the ACM Workshop on 3D Object Retrieval; ACM: Firenze, Italy, 2011. [Google Scholar]
- Wang, X.L.; Liu, Y.; Zha, H. Intrinsic Spin Images: A subspace decomposition approach to understanding 3D deformable shapes. Procdpvt 2010, 10, 17–20. [Google Scholar]
- Rusu, R.B.; Blodow, N.; Marton, Z.C.; Beetz, M. Aligning Point Cloud Views using Persistent Feature Histograms. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Acropolis Convention Center, Nice, France, 22–26 September 2008. [Google Scholar]
- Chen, H.; Bhanu, B. 3D free-form object recognition in range images using local surface patches. Pattern Recognit. Lett. 2007, 28, 1252–1262. [Google Scholar] [CrossRef]
- Sun, J.; Ovsjanikov, M.; Guibas, L. A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion. Comput. Graph. Forum 2009, 28, 1383–1392. [Google Scholar] [CrossRef]
- Lu, B.; Wang, Y. Matching Algorithm of 3D Point Clouds Based on Multiscale Features and Covariance Matrix Descriptors. IEEE Access 2019. [Google Scholar] [CrossRef]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings of the NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, Online, 4 December 2017. [Google Scholar]
- Li, Y.; Bu, R.; Sun, M.; Chen, B. PointCNN. In Proceedings of the 32nd Conference on Neural Information Processing Systems (NIPS), Montreal, Canada, 2–8 December 2018. [Google Scholar]
- Wu, W.; Qi, Z.; Li, F. PointConv: Deep Convolutional Networks on 3D Point Clouds. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- He, B.; Lin, Z.; Li, Y.F. An automatic registration algorithm for the scattered point clouds based on the curvature feature. Opt. Laser Technol. 2013, 46, 53–60. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Campbell, D.; Jia, Y. Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2241–2254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, S.; Ko, H.; Kim, J. VICP: Velocity Updating Iterative Closest Point Algorithm. In Proceedings of the IEEE International Conference on Robotics & Automation, Anchorage, AK, USA, 3–7 May 2012. [Google Scholar]
- Yang, J.; Li, H.; Jia, Y. Go-ICP: Solving 3D Registration Efficiently and Globally Optimally. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013. [Google Scholar]
- Censi, A. An ICP variant using a point-to-line metric. In Proceedings of the IEEE International Conference on Robotics & Automation, Pasadena, CA, USA, 19–23 May 2008. [Google Scholar]
- Magnusson, M.; Lilienthal, A.; Duckett, T. Scan registration for autonomous mining vehicles using 3D-NDT. J. Field Robot. 2010, 24, 803–827. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.; Ahn, C.; Lee, M.; Oh, S. Graph-matching-based correspondence search for nonrigid point cloud registration. Comput. Vis. Image Underst. 2020, 192, 102899.1–102899.12. [Google Scholar] [CrossRef]
- Li, J.; Qian, F.; Chen, X. Point Cloud Registration Algorithm Based on Overlapping Region Extraction. J. Phys. Conf. Ser. 2020, 1634, 012012. [Google Scholar] [CrossRef]
- He, Y.; Lee, C.H. An Improved ICP Registration Algorithm by Combining PointNet++ and ICP Algorithm. In Proceedings of the 2020 6th International Conference on Control, Automation and Robotics (ICCAR), Singapore, 20–23 April 2020. [Google Scholar]
- Kamencay, P.; Sinko, M.; Hudec, R.; Benco, M.; Radil, R. Improved Feature Point Algorithm for 3D Point Cloud Registration. In Proceedings of the 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), Budapest, Hungary, 1–3 July 2019. [Google Scholar]
- Xiong, F.; Dong, B.; Huo, W.; Pang, M.; Han, X. A Local Feature Descriptor Based on Rotational Volume for Pairwise Registration of Point Clouds. IEEE Access 2020, 8, 100120–100134. [Google Scholar]
- Taati, B.; Greenspan, M. Local shape descriptor selection for object recognition in range data. Comput. Vis. Image Underst. 2011, 115, 681–694. [Google Scholar] [CrossRef]
- Papazov, C.; Haddadin, S.; Parusel, S.; Krieger, K.; Burschka, D. Rigid 3D geometry matching for grasping of known objects in cluttered scenes. Int. J. Robot. Res. 2012, 31, 538–553. [Google Scholar] [CrossRef]
- Yu, Z. Intrinsic shape signatures: A shape descriptor for 3D object recognition. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Kyoto, Japan, 27 September–4 October 2010. [Google Scholar]
Model | Error | FPFH | RoPS | RoPS | SI | Ours |
---|---|---|---|---|---|---|
Armadillo | 5.459 | 0.209 | 0.835 | 1.439 | 0.039 | |
0.933 | 0.011 | 0.548 | 0.337 | 0.056 | ||
Bunny | 2.345 | 0.372 | 0.308 | 0.912 | 0.106 | |
0.670 | 0.013 | 0.147 | 0.156 | 0.003 | ||
Dragon | 0.308 | 0.142 | 0.328 | 1.059 | 0.003 | |
0.221 | 0.004 | 0.079 | 0.105 | 0.053 | ||
Happy Buddha | 3.301 | 0.095 | 0.061 | 1.575 | 0.017 | |
1.639 | 0.010 | 0.006 | 0.217 | 0.073 | ||
Asian Dragon | 3.063 | 0.076 | 1.065 | 0.815 | 0.925 | |
0.239 | 0.076 | 0.015 | 0.006 | 0.004 | ||
Thai Statue | 4.024 | 1.239 | 1.220 | 1.408 | 0.772 | |
0.237 | 0.014 | 0.039 | 0.012 | 0.006 |
Model | Error | NN | NNDR | Ours |
---|---|---|---|---|
Bunny | 73.748 | 0.3858 | ||
0.857 | None | 0.0534 | ||
matched | 42 | 10 | ||
Dragon | 14.497 | 0 | 0 | |
5.548 | 4.0426 | 2.7387 | ||
matched | 318 | 6 | 8 | |
Happy Buddha | 18.082 | 1.1706 | ||
7.643 | None | 0.0806 | ||
matched | 418 | 8 | ||
Mario | 35.933 | 0.0115 | 0.3260 | |
39.396 | 3.0640 | 0.1596 | ||
matched | 28 | 3 | 7 | |
Rex | 112.570 | 0.0115 | ||
33.651 | None | 2.4963 | ||
matched | 100 | 4 |
Model | Error | NN | NNDR | Ours |
---|---|---|---|---|
Wheel hub | 2.233 | 0 | 0 | |
1.818 | 8.555 | 1.711 | ||
matched | 512 | 9 | 21 | |
Edge of base | 3.625 | 0 | 0 | |
4.806 | 1.711 | 1.711 | ||
matched | 512 | 8 | 12 | |
Tie rod | 1.252 | 0 | 1.1706 | |
0.995 | 2.851 | 5.704 | ||
matched | 512 | 10 | 15 | |
Bolts | 0.534 | 0 | 0 | |
0.511 | 1.083 | 5.703 | ||
matched | 512 | 3 | 98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Chen, B.; Yuan, M.; Zhao, Q.; Luo, L.; Gao, X. Matching Algorithm for 3D Point Cloud Recognition and Registration Based on Multi-Statistics Histogram Descriptors. Sensors 2022, 22, 417. https://doi.org/10.3390/s22020417
Li J, Chen B, Yuan M, Zhao Q, Luo L, Gao X. Matching Algorithm for 3D Point Cloud Recognition and Registration Based on Multi-Statistics Histogram Descriptors. Sensors. 2022; 22(2):417. https://doi.org/10.3390/s22020417
Chicago/Turabian StyleLi, Jinlong, Bingren Chen, Meng Yuan, Qian Zhao, Lin Luo, and Xiaorong Gao. 2022. "Matching Algorithm for 3D Point Cloud Recognition and Registration Based on Multi-Statistics Histogram Descriptors" Sensors 22, no. 2: 417. https://doi.org/10.3390/s22020417
APA StyleLi, J., Chen, B., Yuan, M., Zhao, Q., Luo, L., & Gao, X. (2022). Matching Algorithm for 3D Point Cloud Recognition and Registration Based on Multi-Statistics Histogram Descriptors. Sensors, 22(2), 417. https://doi.org/10.3390/s22020417