Multi-GNSS Combined Orbit and Clock Solutions at iGMAS
Abstract
:1. Introduction
2. Overview of iGMAS ISC
3. Combination Strategy of Multi-GNSS Orbit and Clock
3.1. Orbit Combination
3.2. Clock Combination
4. Assessments of iGMAS Orbits and Clocks
4.1. Internal Precisions of Combined Orbits and Clocks
4.2. Consistency with IGS Orbits and Clocks
4.3. SLR Validation of iGMAS Combined Orbits
4.4. PPP Using iGMAS Combined Orbits and Clocks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Romero, I.; Noll, C.; Stürze, A.; Weber, G.; et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)–Achievements, prospects and challenges. Adv. Space Res. 2017, 59, 1671–1697. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Hauschild, A. Comparing the ‘Big 4’—A User’s View on GNSS Performance. In Proceedings of the IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR, USA, 20–23 April 2020. [Google Scholar]
- Yang, Y.; Mao, Y.; Sun, B. Basic performance and future developments of BeiDou global navigation satellite system. Satell. Navig. 2020, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Dow, J.; Neilan, R.; Rizos, C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geod. 2009, 83, 191–198. [Google Scholar] [CrossRef]
- Guo, J.; Xu, X.; Zhao, Q.; Liu, J. Precise orbit determination for quad-constellation satellites at Wuhan University: Strategy, result validation, and comparison. J. Geod. 2016, 90, 143–159. [Google Scholar] [CrossRef]
- Prange, L.; Orlia, E.; Dach, R.; Arnold, D.; Beutler, G.; Schaer, S.; Jäggi, A. CODE’s five-system orbit and clock solution—the challenges of multi-GNSS data analysis. J. Geod. 2017, 91, 345–360. [Google Scholar] [CrossRef] [Green Version]
- Uhlemann, M.; Gendt, G.; Ramatschi, M.; Deng, Z. GFZ Global Multi-GNSS Network and Data Processing Results. In IAG 150 Years International Association of Geodesy Symposia; Rizos, C., Willis, P., Eds.; Springer: Cham, Switzerland, 2015; Volume 143. [Google Scholar] [CrossRef]
- Steigenberger, P.; Hugentobler, U.; Loyer, S.; Perosanz, F.; Prange, L.; Dach, R.; Uhlemann, M.; Gendt, G.; Montenbruck, O. Galileo orbit and clock quality of the IGS Multi-GNSS Experiment. Adv. Space Res. 2015, 55, 269–281. [Google Scholar] [CrossRef]
- Springer, T.; Beutler, G. Towards an official IGS orbit by combining the results of all IGS Processing Centers. In Proceedings of the 1993 IGS Workshop, Bern, Switzerland, 24–26 March 1993; pp. 24–26. [Google Scholar]
- Beutler, G.; Kouba, J.; Springer, T. Combining the orbits of the IGS analysis centers. Bull Géod. 1995, 69, 200–222. [Google Scholar] [CrossRef]
- Ferland, R.; Kouba, J.; Hutchison, D. Analysis methodology and recent results of the IGS nerwork combination. Earth Planets Space 2000, 52, 953–957. [Google Scholar] [CrossRef] [Green Version]
- Springer, T. [IGSMAIL-2750]: IGS Final Orbit Changes. Available online: https://lists.igs.org/pipermail/igsmail/2000/004122.html (accessed on 5 January 2022).
- Ferland, R.; Piraszewski, M. The IGS-combined station coordinates, earth rotation parameters and apparent geocenter. J. Geod. 2009, 83, 385–392. [Google Scholar] [CrossRef]
- Mansure, G.; Sakic, P.; Mannel, B.; Schuh, H. Multi-constellation GNSS orbit combination based on MGEX products. Adv. Geosci. 2020, 50, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Sakic, P.; Mansur, G.; Männel, B. A prototype for a Multi-GNSS orbit combination. In Proceedings of the European Navigation Conference ENC 2020, Dresden, Germany, 11–14 May 2020. [Google Scholar]
- Masoumi, S.; Moore, M. IGS ACC v2.0-Status of the Software; Unified Analysis Workshop: Paris, France, 2019. [Google Scholar]
- Sośnica, K.; Zajdel, R.; Bury, G.; Bosy, J.; Moore, M.; Masoumi, S. Quality assessment of experimental IGS multi-GNSS combined orbits. GPS Solut. 2020, 24, 54. [Google Scholar] [CrossRef] [Green Version]
- Kouba, J.; Springer, T. New IGS station and satellite clock combination. GPS Solut. 2001, 4, 31–36. [Google Scholar] [CrossRef]
- Kouba, J.; Mireault, Y.; Lahaye, F. IGS Orbit/Clock Combination and Evaluation, Appendix 1 of the Analysis Coordinator Report; International GPS Service for Geodynamics 1994 Annual Report; Jet Propulsion Laboratory Publication: Chantilly, VA, USA, 1995; pp. 18–95. [Google Scholar]
- Chen, K.; Xu, T.; Yang, Y. Robust combination of IGS analysis center GLONASS clocks. GPS Solut. 2017, 21, 1251–1263. [Google Scholar] [CrossRef]
- Banville, S.; Geng, J.; Loyer, S.; Schaer, S.; Springer, T.; Strasser, S. On the interoperability of IGS products for precise point positioning with ambiguity resolution. J. Geod. 2020, 94, 10. [Google Scholar] [CrossRef]
- Chen, K.; Xu, T.; Chen, G.; Li, J.; Yu, S. The Orbit and Clock Combination of iGMAS Analysis Centers and the Analysis of Their Precision. In Proceedings of the China Satellite Navigation Conference (CSNC), Xian, China, 13–15 May 2015; Volume II, pp. 421–438. [Google Scholar] [CrossRef]
- Tan, C.; Chen, G.; Wei, N.; Cai, H.; Zhao, Q. Combined Satellite Orbits of the iGMAS Analysis Centers: Method and Precision. Geomat. Inf. Sci. Wuhan Univ. 2016, 41, 1439–1475. [Google Scholar]
- Cui, H.; Tang, G.; Hu, S.; Song, B.; Liu, H.; Sun, J.; Zhang, P.; Li, C.; Ge, M.; Han, C. Multi-GNSS Processing Combining GPS, GLONASS, BDS and GALILEO Observations. In Lecture Notes in Electrical Engineering, Proceedings of the China Satellite Navigation Conference (CSNC), Nanjing, China, 21–23 May 2014; Sun, J., Jiao, W., Wu, H., Lu, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 305, p. 305. [Google Scholar] [CrossRef]
- Yan, X.; Liu, C.; Huang, G.; Zhang, Q.; Wang, L.; Qin, Z.; Xie, S. A Priori Solar Radiation Pressure Model for BeiDou-3 MEO Satellites. Remote Sens. 2019, 11, 1605. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Hu, C.; Zhang, K. A BDS-2/BDS-3 Integrated Method for Ultra-Rapid Orbit Determination with the Aid of Precise Satellite Clock Offsets. Remote Sens. 2019, 11, 1758. [Google Scholar] [CrossRef] [Green Version]
- Dai, T.; Li, J.; Zhao, J.; Pang, P.; Wei, Y. Study of Global Station-Selection and Application in Precise Orbit Determination Based on TIN Net. J. Geod. Geodyn. 2017, 37, 77–80. (In Chinese) [Google Scholar]
- Kong, Y.; Sun, B.; Zhang, X.; Wang, Y. Application of Intel MKL in GNSS Data Processing with Bernese GNSS Software. J. Geod. Geodyn. 2020, 40, 736–740. (In Chinese) [Google Scholar]
- Ruan, R.; Jia, X.; Wu, X.; Feng, L.; Zhu, Y. SPODS Software and Its Result of Precise Orbit Determination for GNSS Satellites. In Lecture Notes in Electrical Engineering, Proceedings of the China Satellite Navigation Conference (CSNC), Nanjing, China, 21–23 May 2014; Sun, J., Jiao, W., Wu, H., Lu, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 305, p. 305. [Google Scholar] [CrossRef]
- Liu, J.; Ge, M. PANDA Software and Its Preliminary Result of Positioning and Orbit Determination. Wuhan Univ. J. Nat. Sci. 2003, 8, 603–609. [Google Scholar] [CrossRef]
- Davis, P.J. Interpolation and Approximation; Courier Corporation: North Chelmsford, MA, USA, 1975; pp. 108–126. [Google Scholar]
- Zhu, J. Robustness and the robust estimate. J. Geod. 1996, 70, 586–590. [Google Scholar] [CrossRef]
- Beutler, G.; Brockmann, E.; Gurtner, W.; Hugentobler, U.; Mervart, L.; Rothacher, M.; Verdun, A. Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): Theory and initial results. Manuscr. Geod. 1994, 19, 367–386. [Google Scholar]
- Arnold, D.; Meindl, M.; Beutler, G.; Dach, R.; Schaer, S.; Lutz, S.; Prange, L.; So’snica, K.; Mervart, L.; Jäggi, A. CODE’s new solar radiation pressure model for GNSS orbit determination. J. Geod. 2015, 89, 775–791. [Google Scholar] [CrossRef] [Green Version]
- Bury, G.; Zajdel, R.; Sośnica, K. Accounting for perturbing forces acting on Galileo using a box-wing model. GPS Solut. 2019, 23, 74. [Google Scholar] [CrossRef] [Green Version]
- Katsigianni, G.; Loyer, S.; Perosanz, F.; Mercier, F.; Zajdel, R.; Sos’nica, K. Improving Galileo orbit determination using zero-difference ambiguity fixing in a Multi-GNSS processing. Adv. Space Res. 2019, 63, 2952–2963. [Google Scholar] [CrossRef]
- Loyer, S.; Perosanz, F.; Mercier, F.; Capdeville, H.; Marty, J.C. Zero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis Center. J. Geod. 2012, 86, 991–1003. [Google Scholar] [CrossRef]
- Boehm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global mapping function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 2006, 33, L07304. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Wu, S.; Hajj, G.; Bertiger, W.; Lichten, S. Effects of antenna orientation on GPS carrier phase. Manuscr. Geod. 1993, 18, 91–98. [Google Scholar]
- Petit, G.; Luzum, B. IERS Conventions 2010 (IERS Technical No. 36); Verlag des Bundesamts für Kartographie und Geodäsie: Frankfurt am Main, Germany, 2010. [Google Scholar]
PRN | Bias ± STD | PRN | Bias ± STD | PRN | Bias ± STD |
---|---|---|---|---|---|
C01 | 13.0 ± 17.5 | E12 | −4.5 ± 3.3 | R04 | 3.1 ± 4.9 |
C08 | −5.2 ± 5.8 | E13 | −3.4 ± 3.2 | R05 | 1.2 ± 5.1 |
C10 | 0.1 ± 4.6 | E14 | −1.7 ± 2.7 | R07 | −0.9 ± 3.9 |
C11 | −0.5 ± 4.5 | E15 | −3.5 ± 3.3 | R08 | 0.0 ± 4.6 |
C13 | 0.9 ± 5.2 | E18 | −1.7 ± 3.9 | R09 | −1.6 ± 3.3 |
C20 | 1.1 ± 3.8 | E19 | −4.1 ± 3.8 | R11 | −0.9 ± 4.5 |
C21 | 1.3 ± 3.2 | E21 | −2.9 ± 2.8 | R12 | 2.3 ± 3.4 |
C29 | −4.4 ± 3.4 | E24 | −3.6 ± 2.7 | R13 | 0.1 ± 4.0 |
C30 | −4.9 ± 3.5 | E25 | −3.2 ± 2.4 | R14 | −1.7 ± 3.2 |
E01 | −3.6 ± 3.0 | E26 | −3.6 ± 2.9 | R15 | 1.6 ± 3.9 |
E02 | −3.8 ± 2.5 | E27 | −3.5 ± 2.8 | R16 | −0.9 ± 3.6 |
E03 | −4.4 ± 3.3 | E30 | −3.6 ± 2.9 | R17 | −0.4 ± 4.1 |
E04 | −3.7 ± 3.1 | E31 | −3.3 ± 2.8 | R18 | −0.3 ± 4.7 |
E05 | −4.1 ± 3.7 | E33 | −3.9 ± 2.6 | R19 | −2.0 ± 5.4 |
E07 | −3.7 ± 3.5 | E36 | −3.9 ± 3.4 | R20 | −3.1 ± 6.6 |
E08 | −3.8 ± 3.7 | R01 | −2.4 ± 5.2 | R21 | 2.5 ± 4.3 |
E09 | −3.9 ± 3.5 | R02 | −1.6 ± 4.7 | R22 | 5.0 ± 5.8 |
E11 | −4.5 ± 3.9 | R03 | −0.6 ± 4.6 | R24 | 2.5 ± 5.1 |
GNSS Considered | GPS, GLONASS, Galileo and BDS |
---|---|
Processing mode | Kinematic |
Observables | Undifferenced ionosphere-free linear combination of dual frequency code and phase observation |
Satellite orbit and clock | Final precise products of iGMAS combined orbits and clocks |
Elevation mask | 10°; elevation-dependent weighting of observations |
Tropospheric delay | Dry delay modeled by Saastamoinen Wet delay estimated by white noise |
Mapping function | Global Mapping Function [38] |
Phase wind-up | Corrected [39] |
Site displacements effects | Solid Earth tides and ocean loading are corrected [40] |
Sampling | 30 s |
Estimated parameters | Receiver position, receiver clock bias by white noise, tropospheric wet delay, phase float ambiguity and inter system bias parameters |
SITE | GPS | GPS + GLONASS + BDS + Galileo | ||||
---|---|---|---|---|---|---|
E | N | U | E | N | U | |
ABPO | 4.4 | 1.6 | 4.4 | 1.0 | 0.6 | 2.6 |
BRST | 4.6 | 3.5 | 8.3 | 1.4 | 1.4 | 3.0 |
CHPI | 2.8 | 1.3 | 4.6 | 1.1 | 0.7 | 2.9 |
CUT0 | 2.8 | 2.1 | 4.5 | 1.7 | 1.3 | 2.2 |
JFNG | 2.6 | 2.8 | 3.6 | 1.8 | 1.1 | 2.0 |
KOKB | 1.4 | 1.1 | 4.3 | 0.9 | 0.7 | 3.1 |
SAVO | 4.9 | 3.5 | 7.1 | 2.7 | 3.0 | 5.6 |
UNB3 | 1.7 | 1.6 | 2.2 | 0.8 | 0.8 | 1.6 |
Mean | 3.2 | 2.2 | 4.9 | 1.4 | 1.2 | 2.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Cai, H.; Chen, G.; Jiao, W.; He, Q.; Yang, Y. Multi-GNSS Combined Orbit and Clock Solutions at iGMAS. Sensors 2022, 22, 457. https://doi.org/10.3390/s22020457
Zhou W, Cai H, Chen G, Jiao W, He Q, Yang Y. Multi-GNSS Combined Orbit and Clock Solutions at iGMAS. Sensors. 2022; 22(2):457. https://doi.org/10.3390/s22020457
Chicago/Turabian StyleZhou, Wei, Hongliang Cai, Guo Chen, Wenhai Jiao, Qianqian He, and Yuguo Yang. 2022. "Multi-GNSS Combined Orbit and Clock Solutions at iGMAS" Sensors 22, no. 2: 457. https://doi.org/10.3390/s22020457
APA StyleZhou, W., Cai, H., Chen, G., Jiao, W., He, Q., & Yang, Y. (2022). Multi-GNSS Combined Orbit and Clock Solutions at iGMAS. Sensors, 22(2), 457. https://doi.org/10.3390/s22020457