Machine Learning-Based Heavy Metal Ion Detection Using Surface-Enhanced Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. SERS Measurements
2.2. Preprocessing
2.3. Model Configuration, Training/Validation, and Test Protocol
2.4. Performance Evaluation
3. Results and Discussion
3.1. Performance Evaluation of the Proposed Model
3.2. Data Exploratory Analysis Using PCA-Aligned Cross-Batch Density-Preserving Data Visualization
3.3. Comparative Analysis
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bodelón, G.; Pastoriza-Santos, I. Recent progress in surface-enhanced Raman scattering for the detection of chemical contaminants in water. Front. Chem. 2020, 8, 478. [Google Scholar] [CrossRef] [PubMed]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.; Boisen, A.; Brolo, A.G.; et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2019, 14, 28–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaban, M.; Galaly, A. Highly sensitive and selective in-situ SERS detection of Pb2+, Hg2+, and Cd2+ using nanoporous membrane functionalized with CNTs. Sci. Rep. 2016, 6, 25307. [Google Scholar] [CrossRef] [Green Version]
- Zong, C.; Xu, M.; Xu, L.J.; Wei, T.; Ma, X.; Zheng, X.S.; Hu, R.; Ren, B. Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges. Chem. Rev. 2018, 118, 4946–4980. [Google Scholar] [CrossRef] [PubMed]
- Xi, X.; Liang, C. Perspective of future SERS clinical application based on current status of Raman spectroscopy clinical trials. Front. Chem. 2021, 9, 665841. [Google Scholar] [CrossRef]
- Orlando, A.; Franceschini, F.; Muscas, C.; Pidkova, S.; Bartoli, M.; Rovere, M.; Tagliaferro, A. A comprehensive review on Raman spectroscopy applications. Chemosensors 2021, 9, 262. [Google Scholar] [CrossRef]
- Kuang, L.; Fernandes, D.A.; O’Halloran, M.; Zheng, W.; Jiang, Y.; Ladizhansky, V.; Brown, L.S.; Liang, H. “Frozen” block copolymer nanomembranes with light-driven proton pumping performance. ACS Nano 2014, 8, 537–545. [Google Scholar] [CrossRef]
- Ho, C.S.; Jean, N.; Hogan, C.A.; Blackmon, L.; Jeffrey, S.S.; Holodniy, M.; Banaei, N.; Saleh, A.A.; Ermon, S.; Dionne, J. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat. Commun. 2019, 10, 4927. [Google Scholar] [CrossRef]
- Calizo, I.; Balandin, A.; Bao, W.; Miao, F.; Lau, C. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 2007, 7, 2645–2649. [Google Scholar] [CrossRef]
- Dong, D.; Zhao, C. Limitations and challenges of using Raman spectroscopy to detect the abiotic plant stress response. Proc. Natl. Acad. Sci. USA 2017, 114, E5486–E5487. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Wu, T.; Song, J.; Zhang, Q.; Liu, S.; Xu, R.; Duan, H. SERS-active nanoparticles for sensitive and selective detection of cadmium ion (Cd2+). Chem. Mater. 2011, 23, 4756–4764. [Google Scholar] [CrossRef]
- Fu, Q.; Zhan, Z.; Dou, J.; Zheng, X.; Xu, R.; Wu, M.; Lei, Y. Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique. ACS Appl. Mater. Interfaces 2015, 7, 13322–13328. [Google Scholar] [CrossRef]
- Wu, L.; Wang, W.; Zhang, W.; Su, H.; Liu, Q.; Gu, J.; Deng, T.; Zhang, D. Highly sensitive, reproducible and uniform SERS substrates with a high density of three-dimensionally distributed hotspots: Gyroid-structured Au periodic metallic materials. NPG Asia Mater. 2018, 10, e462. [Google Scholar] [CrossRef] [Green Version]
- Amjad, A.; Ullah, R.; Khan, S.; Bilal, M.; Khan, A. Raman spectroscopy based analysis of milk using random forest classification. Vib. Spectrosc. 2018, 99, 124–129. [Google Scholar] [CrossRef]
- Ai, Y.j.; Liang, P.; Wu, Y.x.; Dong, Q.m.; Li, J.b.; Bai, Y.; Xu, B.J.; Yu, Z.; Ni, D. Rapid qualitative and quantitative determination of food colorants by both Raman spectra and Surface-enhanced Raman Scattering (SERS). Food Chem. 2018, 241, 427–433. [Google Scholar] [CrossRef]
- Dies, H.; Raveendran, J.; Escobedo, C.; Docoslis, A. Rapid identification and quantification of illicit drugs on nanodendritic surface-enhanced Raman scattering substrates. Sens. Actuators B Chem. 2018, 257, 382–388. [Google Scholar] [CrossRef]
- Doty, K.C.; Lednev, I.K. Differentiation of human blood from animal blood using Raman spectroscopy: A survey of forensically relevant species. Forensic Sci. Int. 2018, 282, 204–210. [Google Scholar] [CrossRef]
- Kim, W.; Lee, S.H.; Kim, J.H.; Ahn, Y.J.; Kim, Y.H.; Yu, J.S.; Choi, S. Based surface-enhanced Raman spectroscopy for diagnosing prenatal diseases in women. ACS Nano 2018, 12, 7100–7108. [Google Scholar] [CrossRef] [PubMed]
- Thrift, W.J.; Cabuslay, A.; Laird, A.B.; Ranjbar, S.; Hochbaum, A.I.; Ragan, R. Surface-enhanced Raman scattering-based odor compass: Locating multiple chemical sources and pathogens. ACS Sens. 2019, 4, 2311–2319. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Nanou, A.; Rikkert, L.; Coumans, F.A.; Otto, C.; Terstappen, L.W.; Offerhaus, H.L. Label-free prostate cancer detection by characterization of extracellular vesicles using raman spectroscopy. Anal. Chem. 2018, 90, 11290–11296. [Google Scholar] [CrossRef] [PubMed]
- Malitckii, E.; Fangnon, E.; Vilaça, P. Study of correlation between the steels susceptibility to hydrogen embrittlement and hydrogen thermal desorption spectroscopy using artificial neural network. Neural Comput. Appl. 2020, 32, 14995–15006. [Google Scholar] [CrossRef] [Green Version]
- Sbirrazzuoli, N.; Cachet, C.; Cabrol-Bass, D.; Forrest, T.P. Indices for the evaluation of neural network performance as classifier: Application to structural elucidation in infrared spectroscopy. Neural Comput. Appl. 1993, 1, 229–239. [Google Scholar] [CrossRef]
- Güven, A.; Altınkaynak, M.; Dolu, N.; İzzetoğlu, M.; Pektaş, F.; Özmen, S.; Demirci, E.; Batbat, T. Combining functional near-infrared spectroscopy and EEG measurements for the diagnosis of attention-deficit hyperactivity disorder. Neural Comput. Appl. 2020, 32, 8367–8380. [Google Scholar] [CrossRef]
- Guillén, A.; Del Moral, F.; Herrera, L.J.; Rubio, G.; Rojas, I.; Valenzuela, O.; Pomares, H. Using near-infrared spectroscopy in the classification of white and iberian pork with neural networks. Neural Comput. Appl. 2010, 19, 465–470. [Google Scholar] [CrossRef]
- Janani, A.; Sasikala, M. Investigation of different approaches for noise reduction in functional near-infrared spectroscopy signals for brain–computer interface applications. Neural Comput. Appl. 2017, 28, 2889–2903. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.; Khan, S.; Wahab, A.; Kim, M. SERSNet: Surface-Enhanced Raman Spectroscopy Based Biomolecule Detection Using Deep Neural Network. Biosensors 2021, 11, 490. [Google Scholar] [CrossRef] [PubMed]
- Lussier, F.; Thibault, V.; Charron, B.; Wallace, G.Q.; Masson, J.F. Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering. TrAC Trends Anal. Chem. 2020, 124, 115796. [Google Scholar] [CrossRef]
- Wang, C.; Xiao, L.; Dai, C.; Nguyen, A.H.; Littlepage, L.E.; Schultz, Z.D.; Li, J. A Statistical Approach of Background Removal and Spectrum Identification for SERS Data. Sci. Rep. 2020, 10, 1460. [Google Scholar] [CrossRef]
- Ruckstuhl, A.F.; Jacobson, M.P.; Field, R.W.; Dodd, J.A. Baseline subtraction using robust local regression estimation. J. Quant. Spectrosc. Radiat. Transf. 2001, 68, 179–193. [Google Scholar] [CrossRef]
- Liland, K.H.; Almøy, T.; Mevik, B.H. Optimal choice of baseline correction for multivariate calibration of spectra. Appl. Spectrosc. 2010, 64, 1007–1016. [Google Scholar] [CrossRef]
- Veselkov, K.A.; Vingara, L.K.; Masson, P.; Robinette, S.L.; Want, E.; Li, J.V.; Barton, R.H.; Boursier-Neyret, C.; Walther, B.; Ebbels, T.M.; et al. Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery. Anal. Chem. 2011, 83, 5864–5872. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Q.; Chen, Y. RBF kernel based support vector machine with universal approximation and its application. In International Symposium on Neural Networks; Springer: Berlin/Heidelberg, Germany, 2004; pp. 512–517. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Narayan, A.; Berger, B.; Cho, H. Assessing single-cell transcriptomic variability through density-preserving data visualization. Nat. Biotechnol. 2021, 39, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Rennie, J.D.; Shih, L.; Teevan, J.; Karger, D.R. Tackling the poor assumptions of naive bayes text classifiers. In Proceedings of the 20th International Conference on Machine Learning (ICML-03), Washington, DC, USA, 21–24 August 2003; pp. 616–623. [Google Scholar]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Fan, R.E.; Chang, K.W.; Hsieh, C.J.; Wang, X.R.; Lin, C.J. LIBLINEAR: A library for large linear classification. J. Mach. Learn. Res. 2008, 9, 1871–1874. [Google Scholar]
- Hinton, G.E. Connectionist learning procedures. AIJ 1989, 40, 185–234. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.Y.; Liu, T.Y.; Wang, K.S.; Tsai, K.T.; Chen, Z.X.; Chang, Y.C.; Tseng, Y.Q.; Wang, C.H.; Wang, J.K.; Wang, Y.L. SERS detection of biomolecules by highly sensitive and reproducible Raman-enhancing nanoparticle array. Nanoscale Res. Lett. 2017, 12, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Cong, S.; Wang, Z.; Gong, W.; Chen, Z.; Lu, W.; Lombardi, J.R.; Zhao, Z. Electrochromic semiconductors as colorimetric SERS substrates with high reproducibility and renewability. Nat. Commun. 2019, 10, 678. [Google Scholar] [CrossRef] [PubMed]
- Van der Steen, H.; Black, J.D. Temperature analysis of Coherent Anti-Stokes Raman spectra using a neural network approach. Neural Comput. Appl. 1997, 5, 248–257. [Google Scholar] [CrossRef]
- Weng, S.; Yuan, H.; Zhang, X.; Li, P.; Zheng, L.; Zhao, J.; Huang, L. Deep learning networks for the recognition and quantitation of surface-enhanced Raman spectroscopy. Analyst 2020, 145, 4827–4835. [Google Scholar] [CrossRef] [PubMed]
Negative | Positive | |||
---|---|---|---|---|
Concentration (uM) | 0.01 | 0.1 | 10 | 1000 |
Batch1 | 500 | 500 | 500 | 500 |
Batch2 | 500 | 500 | 500 | 500 |
Dataset | Train | Test | Accuracy | Sensitivity | Specificity | F1 | MCC | BACC | Youden’s Index |
---|---|---|---|---|---|---|---|---|---|
RAW | Batch1 | Batch2 | 0.501 ± 0.000 | 0.335 ± 0.000 | 1.000 ± 0.000 | 0.501 ± 0.000 | 0.334 ± 0.000 | 0.667 ± 0.000 | 0.335 ± 0.000 |
Batch2 | Batch1 | 0.721 ± 0.019 | 0.765 ± 0.011 | 0.591 ± 0.084 | 0.805 ± 0.011 | 0.328 ± 0.069 | 0.678 ± 0.040 | 0.356 ± 0.080 | |
Average | 0.611 ± 0.114 | 0.550 ± 0.221 | 0.796 ± 0.218 | 0.653 ± 0.156 | 0.331 ± 0.048 | 0.673 ± 0.028 | 0.345 ± 0.056 | ||
PSN | Batch1 | Batch2 | 0.750 ± 0.000 | 1.000 ± 0.000 | 0.000 ± 0.000 | 0.857 ± 0.000 | 0.000 ± 0.000 | 0.500 ± 0.000 | 0.000 ± 0.000 |
Batch2 | Batch1 | 0.750 ± 0.000 | 1.000 ± 0.000 | 0.000 ± 0.000 | 0.857 ± 0.000 | 0.000 ± 0.000 | 0.500 ± 0.000 | 0.000 ± 0.000 | |
Average | 0.750 ± 0.000 | 1.000 ± 0.000 | 0.000 ± 0.000 | 0.857 ± 0.000 | 0.000 ± 0.000 | 0.500 ± 0.000 | 0.000 ± 0.000 | ||
Proposed (BC+RBFSVM) | Batch1 | Batch2 | 0.637 ± 0.005 | 0.517 ± 0.007 | 0.999 ± 0.001 | 0.681 ± 0.006 | 0.459 ± 0.004 | 0.758 ± 0.003 | 0.516 ± 0.006 |
Batch2 | Batch1 | 0.901 ± 0.005 | 0.868 ± 0.006 | 1.000 ± 0.000 | 0.929 ± 0.004 | 0.788 ± 0.008 | 0.934 ± 0.003 | 0.868 ± 0.006 | |
Average | 0.769 ± 0.135 | 0.692 ± 0.180 | 1.000 ± 0.001 | 0.805 ± 0.127 | 0.623 ± 0.169 | 0.846 ± 0.09 | 0.692 ± 0.180 |
Model | Train/Test | Average | |
---|---|---|---|
Batch1/Batch2 | Batch2/Batch1 | ||
LR | 0.735 ± 0.005 | 0.582 ± 0.008 | 0.658 ± 0.079 |
LinSVM | 0.661 ± 0.042 | 0.606 ± 0.011 | 0.634 ± 0.042 |
NB | 0.882 ± 0.002 | 0.695 ± 0.006 | 0.789 ± 0.096 |
DT | 0.574 ± 0.031 | 0.733 ± 0.072 | 0.654 ± 0.098 |
RF | 0.603 ± 0.006 | 0.784 ± 0.047 | 0.694 ± 0.098 |
MLP | 0.754 ± 0.006 | 0.896 ± 0.030 | 0.825 ± 0.076 |
RBFSVM | 0.758 ± 0.003 | 0.934 ± 0.003 | 0.846 ± 0.090 |
Dset | Train | Test | Accuracy | Sensitivity | Specificity | F1 | MCC | BACC | Youden’s Index |
---|---|---|---|---|---|---|---|---|---|
RAW | Batch1 | Batch1 | 0.999 ± 0.002 | 0.999 ± 0.003 | 1.000 ± 0.000 | 0.999 ± 0.001 | 0.997 ± 0.006 | 0.999 ± 0.001 | 0.999 ± 0.003 |
Batch2 | Batch2 | 0.922 ± 0.015 | 0.906 ± 0.020 | 0.972 ± 0.036 | 0.946 ± 0.011 | 0.820 ± 0.034 | 0.939 ± 0.018 | 0.878 ± 0.036 | |
Average | 0.961 ± 0.041 | 0.952 ± 0.050 | 0.986 ± 0.028 | 0.973 ± 0.028 | 0.909 ± 0.094 | 0.969 ± 0.033 | 0.938 ± 0.067 | ||
PSN | Batch1 | Batch1 | 1.000 ± 0.002 | 0.999 ± 0.002 | 1.000 ± 0.000 | 1.000 ± 0.001 | 0.999 ± 0.004 | 1.000 ± 0.001 | 0.999 ± 0.002 |
Batch2 | Batch2 | 0.900 ± 0.037 | 0.906 ± 0.033 | 0.880 ± 0.064 | 0.931 ± 0.026 | 0.751 ± 0.089 | 0.893 ± 0.044 | 0.786 ± 0.089 | |
Average | 0.950 ± 0.057 | 0.953 ± 0.053 | 0.940 ± 0.076 | 0.965 ± 0.040 | 0.875 ± 0.141 | 0.946 ± 0.063 | 0.893 ± 0.125 | ||
BC | Batch1 | Batch1 | 1.000 ± 0.000 | 1.000 ± 0.000 | 1.000 ± 0.000 | 1.000 ± 0.000 | 1.000 ± 0.000 | 1.000 ± 0.000 | 1.000 ± 0.000 |
Batch2 | Batch2 | 0.973 ± 0.012 | 0.986 ± 0.009 | 0.934 ± 0.038 | 0.982 ± 0.008 | 0.928 ± 0.032 | 0.960 ± 0.020 | 0.920 ± 0.039 | |
Average | 0.986 ± 0.016 | 0.993 ± 0.009 | 0.967 ± 0.043 | 0.991 ± 0.011 | 0.964 ± 0.043 | 0.980 ± 0.025 | 0.960 ± 0.049 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Lee, J.; Khan, S.; Wahab, A.; Kim, M. Machine Learning-Based Heavy Metal Ion Detection Using Surface-Enhanced Raman Spectroscopy. Sensors 2022, 22, 596. https://doi.org/10.3390/s22020596
Park S, Lee J, Khan S, Wahab A, Kim M. Machine Learning-Based Heavy Metal Ion Detection Using Surface-Enhanced Raman Spectroscopy. Sensors. 2022; 22(2):596. https://doi.org/10.3390/s22020596
Chicago/Turabian StylePark, Seongyong, Jaeseok Lee, Shujaat Khan, Abdul Wahab, and Minseok Kim. 2022. "Machine Learning-Based Heavy Metal Ion Detection Using Surface-Enhanced Raman Spectroscopy" Sensors 22, no. 2: 596. https://doi.org/10.3390/s22020596
APA StylePark, S., Lee, J., Khan, S., Wahab, A., & Kim, M. (2022). Machine Learning-Based Heavy Metal Ion Detection Using Surface-Enhanced Raman Spectroscopy. Sensors, 22(2), 596. https://doi.org/10.3390/s22020596