A Bilevel Optimization Model Based on Edge Computing for Microgrid
Abstract
:1. Introduction
- We put forward a bilevel optimization model, aiming to realize the cost-optimal control decision under the condition of load balancing for microgrid users. The model consists of an upper-level module and a lower-level module.
- We introduce the modeling process of both the upper-level module and the lower-level module and the model solution procedure in detail. The purpose on the two-layer optimization modules is to optimize the cost of power distribution of microgrids.
- Extensive simulations are conducted to demonstrate the proposed bilevel optimization model. The results indicate that the proposed model is feasible for the control decision of power distribution of microgrid users.
2. Background
2.1. Dijkstra Algorithm
- First, the parameters are initialized: start node , destination node , intermediate variable , where represents the intermediate value of the shortest distance solution process and denotes the distance between adjacent nodes i and j. If the two nodes are nonadjacent, set . Initialize , where and is the shortest distance from node i to node j. This shortest distance includes the distances passing through intermediate nodes.
- Second, compare all distances between adjacent nodes i and j () and let , where .For all , if , set , where is an intermediate variable. indicates that the node j has been compared with node i.For all , if , let , where intermediate node , is the shortest distance from node i to node k and denotes the distance from intermediate node k to the adjacent node i.
- Next, judge whether all , where . If not, recompare all new distances except the distance of node . Otherwise, check whether i is more than or equal to n. If so, the algorithm ends; if not, let and reinitialize the parameters: , , where and . Then, continue to execute the algorithm.
3. Bilevel Optimization Model
3.1. Upper-Level Module
- The electricity purchasing cost for consumers is represented in Equation (5):
- The electricity selling cost is defined in Equation (6):
- The transmission cost is demonstrated in Equation (7):
- The line power constraint is defined in Equation (8):
- The electric power constraint of the microgrid is shown in Equation (9):
- The microgrid price constraint is presented in Equation (10):
- The microgrid cost constraint is defined in Equation (11).We see that if the electricity price is less than , the electricity price is inversely proportional to the transmission cost, and the higher the electricity price, the lower the transmission cost. If the electricity price is greater than , the electricity price is directly proportional to the transmission cost, and the higher the electricity price, the higher the transmission cost.
3.2. Lower-Level Module
- After the modeling and operation of the upper-level module, we obtain the weight values between the microgrid user nodes. Then, these weight values are combined into a digraph matrix. The lower-level objective function is defined in Equation (12).
- The corresponding lower-level constraints are as follow (14):
4. Model Solution
5. Simulated Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, X.; Saaklayen, M.A.; Igder, M.A.; Shawon, S.M.R.H.; Faried, S.O.; Janbakhsh, M. Planning and service restoration through microgrid formation and soft open points for distribution network modernization: A review. IEEE Trans. Ind. Appl. 2022, 58, 1843–1857. [Google Scholar] [CrossRef]
- Cabana-Jiménez, K.; Candelo-Becerra, J.E.; Sousa Santos, V. Comprehensive analysis of microgrids configurations and topologies. Sustainability 2022, 14, 1056. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, H.; Tseng, M.L.; Zhang, W.; Li, X. Hierarchical energy optimization management of active distribution network with multi-microgrid system. J. Ind. Prod. Eng. 2022, 39, 210–229. [Google Scholar]
- Jithendranath, J.; Das, D. Stochastic planning of islanded microgrids with uncertain multi-energy demands and renewable generations. IET Renew. Power Gener. 2020, 14, 4179–4192. [Google Scholar] [CrossRef]
- Mansouri, S.A.; Ahmarinejad, A.; Nematbakhsh, E.; Javadi, M.S.; Nezhad, A.E.; Catalão, J.P. A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources. Energy 2022, 245, 123228. [Google Scholar] [CrossRef]
- Xu, X.; Niu, D.; Peng, L.; Zheng, S.; Qiu, J. Hierarchical multi-objective optimal planning model of active distribution network considering distributed generation and demand-side response. Sustain. Energy Technol. Assess. 2022, 53, 102438. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Wang, Y.; Zeng, M.; Li, F.; Wang, Y.; Zhang, Y. Energy management of smart micro-grid with response loads and distributed generation considering demand response. J. Clean. Prod. 2018, 197, 1069–1083. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, C.; Kang, C.; Wu, Q. Analysis of development of key technologies in active distribution network. Electr. Power Constr. 2015, 36, 26–32. [Google Scholar]
- Leonori, S.; Paschero, M.; Mascioli, F.M.F.; Rizzi, A. Optimization strategies for Microgrid energy management systems by Genetic Algorithms. Appl. Soft Comput. 2020, 86, 105903. [Google Scholar] [CrossRef]
- Shuai, H.; Fang, J.; Ai, X.; Wen, J.; He, H. Optimal real-time operation strategy for microgrid: An ADP-based stochastic nonlinear optimization approach. IEEE Trans. Sustain. Energy 2018, 10, 931–942. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Zhang, H.; Song, Y.; Wang, L.; Ahmad, T.; Luo, X. Demand response for industrial micro-grid considering photovoltaic power uncertainty and battery operational cost. IEEE Trans. Smart Grid 2021, 12, 3043–3055. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, A.D.; Wen, H.; Jiang, Y.X.; Zhang, T.Y. A lightweight mutual authentication scheme for power edge computing system. In Proceedings of the International Conference on Energy, Power, Environment and Computer Application (ICEPECA 2019), Wuhan, China, 20–21 January 2019; pp. 72–76. [Google Scholar]
- Liu, T.; Tan, X.; Sun, B.; Wu, Y.; Tsang, D.H. Energy management of cooperative microgrids: A distributed optimization approach. Int. J. Electr. Power Energy Syst. 2018, 96, 335–346. [Google Scholar] [CrossRef]
- Ruzbahani, H.M.; Rahimnejad, A.; Karimipour, H. Smart Households Demand Response Management with Micro Grid. In Proceedings of the 2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 18–21 February 2019; pp. 1–5. [Google Scholar]
- Li, J.; Wen, B.; Wang, H. Adaptive virtual inertia control strategy of VSG for micro-grid based on improved bang-bang control strategy. IEEE Access 2019, 7, 39509–39514. [Google Scholar] [CrossRef]
- Mir, M.; Dayyani, M.; Sutikno, T.; Mohammadi Zanjireh, M.; Razmjooy, N. Employing a gaussian particle swarm optimization method for tuning multi input multi output-fuzzy system as an integrated controller of a micro-grid with stability analysis. Comput. Intell. 2020, 36, 225–258. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, H.; Wu, J.; Song, H.; Xu, A.; Jiang, Y.; Zhang, T.; Wang, Z. Clustering based physical-layer authentication in edge computing systems with asymmetric resources. Sensors 2019, 19, 1926. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ho, P.H.; Wen, H.; Chang, S.Y.; Real, S. On physical-layer authentication via online transfer learning. IEEE Internet Things J. 2022, 9, 1374–1385. [Google Scholar] [CrossRef]
- Jing, Y.; Zhang, Z.; Hu, T.; Li, Z.; Liu, S. Sustainable intrusion detection with new attack classification in private clouds. J. Netw. Netw. Appl. 2022, 1, 150–159. [Google Scholar] [CrossRef]
- Lin, J.; Huang, L.; Zhang, H.; Yang, X.; Zhao, P. A novel Latency-Guaranteed based Resource Double Auction for market-oriented edge computing. Comput. Netw. 2021, 189, 107873. [Google Scholar] [CrossRef]
- Xu, M.; Liu, Y.; Huang, Q.; Zhang, Y.; Luan, G. An improved Dijkstra’s shortest path algorithm for sparse network. Appl. Math. Comput. 2007, 185, 247–254. [Google Scholar] [CrossRef]
- Li, X.; Hu, X.; Wang, Z.; Du, Z. Path planning based on combinaion of improved A-STAR algorithm and DWA algorithm. In Proceedings of the 2020 2nd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM), Manchester, UK, 15–17 October 2020; pp. 99–103. [Google Scholar]
- Baldi, S.; Maric, N.; Dornberger, R.; Hanne, T. Pathfinding optimization when solving the paparazzi problem comparing A* and Dijkstra’s algorithm. In Proceedings of the 2018 6th International Symposium on Computational and Business Intelligence (ISCBI), Basel, Switzerland, 27–29 August 2018; pp. 16–22. [Google Scholar]
- Abu-Elzait, S.; Parkin, R. Economic and environmental advantages of renewable-based microgrids over conventional microgrids. In Proceedings of the 2019 IEEE Green Technologies Conference (GreenTech), Lafayette, LA, USA, 3–6 April 2019; IEEE: New York, NY, USA, 2019; pp. 1–4. [Google Scholar]
- Parag, Y.; Ainspan, M. Sustainable microgrids: Economic, environmental and social costs and benefits of microgrid deployment. Energy Sustain. Dev. 2019, 52, 72–81. [Google Scholar] [CrossRef]
- Luo, M.; Hou, X.; Yang, J. Surface optimal path planning using an extended Dijkstra algorithm. IEEE Access 2020, 8, 147827–147838. [Google Scholar] [CrossRef]
- Wang, Z.J.; Zhan, Z.H.; Kwong, S.; Jin, H.; Zhang, J. Adaptive granularity learning distributed particle swarm optimization for large-scale optimization. IEEE Trans. Cybern. 2020, 51, 1175–1188. [Google Scholar] [CrossRef] [PubMed]
- Sutrisno, S.; Ahmadi, A.; Suharyo, O.S. The optimization of multipurpose building development on project scheduling using precedence diagram method (PDM). J. ASRO 2018, 9, 1–7. [Google Scholar] [CrossRef]
- Wisaeng, K.; Sa-Ngiamvibool, W. Exudates detection using morphology mean shift algorithm in retinal images. IEEE Access 2019, 7, 11946–11958. [Google Scholar] [CrossRef]
Customer | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
675 | 434 | 441 | 438 | 412 | 402 | 591 | 584 | 583 | 582 | 584 | 593 | 408 | 438 | 445 | 492 | 814 | 308 |
676 | 435 | 434 | 419 | 414 | 410 | 590 | 595 | 590 | 591 | 400 | 403 | 423 | 444 | 442 | 488 | 484 | 304 |
677 | 434 | 445 | 434 | 424 | 404 | 534 | 551 | 538 | 581 | 534 | 580 | 534 | 538 | 549 | 530 | 535 | 591 |
678 | 433 | 429 | 419 | 593 | 585 | 544 | 531 | 543 | 558 | 555 | 559 | 541 | 541 | 534 | 541 | 544 | 545 |
679 | 438 | 403 | 599 | 590 | 531 | 532 | 549 | 553 | 545 | 535 | 584 | 408 | 434 | 449 | 499 | 483 | 498 |
680 | 439 | 444 | 443 | 430 | 433 | 404 | 402 | 588 | 590 | 595 | 403 | 444 | 440 | 488 | 498 | 341 | 353 |
681 | 480 | 499 | 443 | 434 | 438 | 415 | 409 | 419 | 421 | 425 | 413 | 439 | 454 | 444 | 484 | 310 | 303 |
682 | 481 | 453 | 449 | 429 | 403 | 404 | 594 | 402 | 598 | 403 | 418 | 434 | 450 | 448 | 495 | 485 | 485 |
683 | 482 | 485 | 443 | 450 | 442 | 434 | 423 | 413 | 411 | 413 | 422 | 445 | 435 | 485 | 499 | 498 | 309 |
684 | 483 | 435 | 481 | 445 | 443 | 423 | 419 | 419 | 401 | 594 | 589 | 593 | 534 | 532 | 543 | 534 | 582 |
685 | 400 | 452 | 483 | 419 | 418 | 403 | 585 | 581 | 583 | 533 | 544 | 533 | 542 | 583 | 550 | 549 | 558 |
686 | 485 | 424 | 412 | 598 | 585 | 593 | 583 | 544 | 543 | 583 | 401 | 432 | 448 | 490 | 308 | 814 | 341 |
687 | 484 | 444 | 444 | 441 | 422 | 422 | 409 | 409 | 413 | 405 | 411 | 448 | 435 | 305 | 328 | 313 | 322 |
688 | 483 | 443 | 435 | 430 | 438 | 413 | 415 | 413 | 403 | 424 | 429 | 443 | 459 | 300 | 333 | 329 | 320 |
689 | 488 | 449 | 433 | 433 | 455 | 444 | 432 | 433 | 443 | 439 | 453 | 441 | 484 | 494 | 328 | 309 | 312 |
Cost Parameter | |||||
---|---|---|---|---|---|
Weight Ratios | |||||
Parameter Group | |||||
1 | 0.263 | 0.625 | 0.425 | ||
2 | 0.163 | 0.431 | 0.235 | ||
3 | 0.218 | 0.342 | 0.117 | ||
4 | 0.284 | 0.523 | 0.425 | ||
5 | 0.412 | 0.321 | 0.241 | ||
6 | 0.251 | 0.325 | 0.415 | ||
7 | 0.368 | 0.407 | 0.223 |
Destination Nodes | Doug | Mark | Charies | Michael | Bridget | Alice | ||
---|---|---|---|---|---|---|---|---|
Weighted Objective Function Value | ||||||||
Initial Nodes | ||||||||
Doug | 0 | 6.2 | inf | inf | inf | inf | ||
Mark | 6.2 | 0 | inf | inf | inf | 19.6 | ||
Charies | 4.3 | inf | 0 | inf | inf | inf | ||
Michael | 4.6 | inf | inf | 0 | 9.6 | 6.8 | ||
Bridget | 15.1 | inf | inf | 9.6 | 0 | 10.6 | ||
Alice | 6.7 | 9.5 | 26.2 | 6.8 | 10.6 | 0 |
Scheme | Path |
---|---|
1 | Bridget → Michael → Doug |
2 | Bridget → Doug |
3 | Bridget → Alice → Doug |
4 | Bridget → Michael → Alice → Doug |
5 | Bridget → Alice → Michael → Doug |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Hayawi, K.; Fan, M.; Chang, S.Y.; Tang, J.; Yang, L.; Zhao, R.; Mao, Z.; Wen, H. A Bilevel Optimization Model Based on Edge Computing for Microgrid. Sensors 2022, 22, 7710. https://doi.org/10.3390/s22207710
Chen Y, Hayawi K, Fan M, Chang SY, Tang J, Yang L, Zhao R, Mao Z, Wen H. A Bilevel Optimization Model Based on Edge Computing for Microgrid. Sensors. 2022; 22(20):7710. https://doi.org/10.3390/s22207710
Chicago/Turabian StyleChen, Yi, Kadhim Hayawi, Meikai Fan, Shih Yu Chang, Jie Tang, Ling Yang, Rui Zhao, Zhongqi Mao, and Hong Wen. 2022. "A Bilevel Optimization Model Based on Edge Computing for Microgrid" Sensors 22, no. 20: 7710. https://doi.org/10.3390/s22207710
APA StyleChen, Y., Hayawi, K., Fan, M., Chang, S. Y., Tang, J., Yang, L., Zhao, R., Mao, Z., & Wen, H. (2022). A Bilevel Optimization Model Based on Edge Computing for Microgrid. Sensors, 22(20), 7710. https://doi.org/10.3390/s22207710