Composite Multiscale Transition Permutation Entropy-Based Fault Diagnosis of Bearings
Abstract
:1. Introduction
- (1)
- In order to enhance the accuracy of feature extraction and the comprehensiveness of information analysis, CMTPE was proposed as a strategy to quantify the complexity of time series.
- (2)
- A fault diagnosis strategy based on CMTPE and ELM was proposed for bearing fault type identification to identify the fault types of bearings.
- (3)
- The advantages of CMTPE in feature extraction were verified by simulation and experimental signals. Comparing TPE, MPE, and MTPE, the results showed that CMTPE has the highest fault diagnosis performance.
2. Methodology
2.1. Transition Permutation Entropy (TPE)
2.2. Multiscale Transition Permutation Entropy (MTPE)
2.3. Composite Multiscale Transition Permutation Entropy (CMTPE)
2.4. CMTPE Based Fault Diagnosis Strategy
3. Simulation Evaluation
3.1. Simulated Bearing Signal
3.2. Analysis of Simulation Results
4. Experimental Evaluation
4.1. Bearing Test Rig and Experimental Data Illustration
4.2. Comparison Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gao, D.; Zhu, Y.; Wang, X.; Yan, K.; Hong, J. A Fault Diagnosis Method of Rolling Bearing Based on Complex Morlet CWT and CNN. In Proceedings of the 2018 Prognostics and System Health Management Conference (PHM-Chongqing), Chongqing, China, 26–28 October 2018; pp. 1101–1105. [Google Scholar] [CrossRef]
- Mohanty, S.; Gupta, K.K.; Raju, K.S. Comparative study between VMD and EMD in bearing fault diagnosis. In Proceedings of the 2014 9th International Conference on Industrial and Information Systems (ICIIS), Gwalior, India, 15–17 December 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Sohaib, M.; Kim, C.H.; Kim, J.M. A hybrid feature model and deep-learning-based bearing fault diagnosis. Sensors 2017, 17, 2876. [Google Scholar] [CrossRef] [Green Version]
- Chegini, S.N.; Bagheri, A.; Najafi, F. Application of a new EWT-based denoising technique in bearing fault diagnosis. Measurement 2019, 144, 275–297. [Google Scholar] [CrossRef]
- Kankar, P.K.; Sharma, S.C.; Harsha, S.P. Fault diagnosis of ball bearings using machine learning methods. Expert Syst. Appl. 2011, 38, 1876–1886. [Google Scholar] [CrossRef]
- Youcef Khodja, A.; Guersi, N.; Saadi, M.N.; Boutasseta, N. Rolling element bearing fault diagnosis for rotating machinery using vibration spectrum imaging and convolutional neural networks. Int. J. Adv. Manuf. Technol. 2020, 106, 1737–1751. [Google Scholar] [CrossRef]
- Ali, J.B.; Fnaiech, N.; Saidi, L.; Chebel-Morello, B.; Fnaiech, F. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Appl. Acoust. 2015, 89, 16–27. [Google Scholar]
- Zhang, W.; Li, C.; Peng, G.; Chen, Y.; Zhang, Z. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 2018, 100, 439–453. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Liu, Z.; Liang, X.; Si, S. The Entropy Algorithm and Its Variants in the Fault Diagnosis of Rotating Machinery: A Review. IEEE Access 2018, 6, 66723–66741. [Google Scholar] [CrossRef]
- Pinkus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Cir. Physiol 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.D.; Wu, C.W.; Lin, S.G.; Lee, K.Y.; Peng, C.K. Analysis of complex time series using refined composite multiscale entropy. Phys. Lett. A 2014, 378, 1369–1374. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Z.; Xie, H.; Yu, W. Characterization of Surface EMG Signal Based on Fuzzy Entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Zhang, S.; Zhao, H.; Yang, X. A Novel Fault Diagnosis Method Based on Integrating Empirical Wavelet Transform and Fuzzy Entropy for Motor Bearing. IEEE Access 2018, 6, 35042–35056. [Google Scholar] [CrossRef]
- Wang, X.; Si, S.; Li, Y. Multiscale Diversity Entropy: A Novel Dynamical Measure for Fault Diagnosis of Rotating Machinery. IEEE Trans. Ind. Inform. 2021, 17, 5419–5429. [Google Scholar] [CrossRef]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Xiong, G.; Liu, H.; Zou, H.; Guo, W. Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference. Expert Syst. Appl. 2010, 37, 6077–6085. [Google Scholar] [CrossRef]
- Li, Y.; Feng, K.; Liang, X.; Zou, M.J. A fault diagnosis method for planetary gearboxes under non-stationary working conditions using improved Vold-Kalman filter and multi-scale sample entropy. J. Sound Vib. 2019, 439, 271–286. [Google Scholar] [CrossRef]
- Hsieh, N.K.; Lin, W.Y.; Young, H.T. High-speed spindle fault diagnosis with the empirical mode decomposition and multiscale entropy method. Entropy 2015, 17, 2170–2183. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xu, M.; Wang, R.; Huang, W. A fault diagnosis scheme for rolling bearing based on local mean decomposition and improved multiscale fuzzy entropy. J. Sound Vib. 2016, 360, 277–299. [Google Scholar] [CrossRef]
- Li, Y.; Wei, Y.; Feng, K.; Wang, X.; Liu, Z. Fault diagnosis of rolling bearing under speed fluctuation condition based on Vold-Kalman filter and RCMFE. IEEE Access 2018, 6, 37349–37360. [Google Scholar] [CrossRef]
- Zheng, J.; Cheng, J.; Yang, Y.; Luo, S. A rolling bearing fault diagnosis method based on multi-scale fuzzy entropy and variable predictive model-based class discrimination. Mech. Mach. Theory 2014, 78, 187–200. [Google Scholar] [CrossRef]
- Li, Y.; Xu, M.; Wei, Y.; Huang, W. A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree. Measurement 2016, 77, 80–94. [Google Scholar] [CrossRef]
- Wang, X.; Si, S.; Wei, Y.; Li, Y. The optimized multi-scale permutation entropy and its application in compound fault diagnosis of rotating machinery. Entropy 2019, 21, 170. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.-D.; Wu, P.-H.; Wu, C.-W.; Ding, J.-J.; Wang, C.-C. Bearing fault diagnosis based on multiscale permutation entropy and support vector machine. Entropy 2012, 14, 1343–1356. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yang, Y.; Li, G.; Xu, M. A fault diagnosis scheme for planetary gearboxes using modified multi-scale symbolic dynamic entropy and mRMR feature selection. Mech. Syst. Signal Process. 2017, 91, 295–312. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Yang, Y.; Deng, Z. Multiscale symbolic fuzzy entropy: An entropy denoising method for weak feature extraction of rotating machinery. Mech. Syst. Signal Process. 2022, 162, 108052. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Li, N.; Deng, Z. Multiscale symbolic diversity entropy: A novel measurement approach for time-series analysis and its application in fault diagnosis of planetary gearboxes. IEEE Trans. Ind. Inform. 2021, 18, 1121–1131. [Google Scholar] [CrossRef]
- Zhang, B.; Shang, P. Transition Permutation Entropy and Transition Dissimilarity Measure: Efficient Tools for Fault Detection of Railway Vehicle Systems. IEEE Trans. Ind. Inform. 2021, 18, 1654–1662. [Google Scholar] [CrossRef]
- Patange, A.D.; Jegadeeshwaran, R.; Bajaj, N.S.; Apoorva, K. Application of Machine Learning for Tool Condition Monitoring in Turning. Sound Vib. 2022, 56, 127–145. [Google Scholar] [CrossRef]
- Li, Y. Investigation of Fault Feature Extraction and Early Fault Diagnosis for Rolling Bearings. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2017. [Google Scholar]
- Patange, A.D.; Jegadeeshwaran, R. Application of bayesian family classifiers for cutting tool inserts health monitoring on CNC milling. Int. J. Progn. Health Manag. 2020, 11. [Google Scholar] [CrossRef]
- Patange, A.D.; Jegadeeshwaran, R. A machine learning approach for vibration-based multipoint tool insert health prediction on vertical machining centre (VMC). Measurement 2021, 173, 108649. [Google Scholar] [CrossRef]
- Bajaj, N.S.; Patange, A.D.; Jegadeeshwaran, R.; Kulkarni, K.A.; Ghatpande, R.S.; Kapadnis, A.M. A Bayesian optimized discriminant analysis model for condition monitoring of face milling cutter using vibration datasets. J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. 2022, 5, 021002. [Google Scholar] [CrossRef]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Parameter | Value |
---|---|
Pitch circle diameter | 35.5 mm |
Roller diameter | 6.5 mm |
Rotating speed | 3000 rpm |
Number of rollers | 12 |
Sample frequency | 10,240 Hz |
Natural frequency of bearing | 4000 Hz |
Contact angle | 0° |
Methods | CMTPE | TPE | MTPE | MPE |
---|---|---|---|---|
Average test accuracy (%) | 98.60 | 82.16 | 86.37 | 96.51 |
Variance (%) | 0.65 | 1.39 | 1.92 | 0.94 |
Methods | CMTPE | TPE | MTPE | MPE |
---|---|---|---|---|
Average test accuracy (%) | 96.46 | 44.71 | 70.46 | 94.31 |
Variance (%) | 0.74 | 1.95 | 1.85 | 1.01 |
Methods | CMTPE | TPE | MTPE | MPE |
---|---|---|---|---|
Average test accuracy (%) | 99.67 | 60.49 | 86.39 | 94.97 |
Variance (%) | 0.34 | 1.51 | 1.90 | 1.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Ma, B.; Zou, T.; Gui, L.; Li, Y. Composite Multiscale Transition Permutation Entropy-Based Fault Diagnosis of Bearings. Sensors 2022, 22, 7809. https://doi.org/10.3390/s22207809
Guo J, Ma B, Zou T, Gui L, Li Y. Composite Multiscale Transition Permutation Entropy-Based Fault Diagnosis of Bearings. Sensors. 2022; 22(20):7809. https://doi.org/10.3390/s22207809
Chicago/Turabian StyleGuo, Jing, Biao Ma, Tiangang Zou, Lin Gui, and Yongbo Li. 2022. "Composite Multiscale Transition Permutation Entropy-Based Fault Diagnosis of Bearings" Sensors 22, no. 20: 7809. https://doi.org/10.3390/s22207809
APA StyleGuo, J., Ma, B., Zou, T., Gui, L., & Li, Y. (2022). Composite Multiscale Transition Permutation Entropy-Based Fault Diagnosis of Bearings. Sensors, 22(20), 7809. https://doi.org/10.3390/s22207809